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Abstract

This dissertation examines new approaches to extended reality visualization that use

physical rendering processes to make data more graspable: both more comprehensible

and more embodied. Current extended reality visualizations enable new data insights and

better comprehension of spatial data, but they lack the physical embodiment and tactility

that has been crucial to past scientific breakthroughs. Current data physicalizations

have this tactility yet lack in the interactivity required for today’s scientific sensemaking

processes. In this dissertation, I explore new ways to combine the embodiment of data

physicalizations and the comprehensibility of extended reality visualizations to make data

more graspable using physical rendering processes, which make it possible to create

physical objects from digital data and enable physical elements from the real world to

be used in digital visualizations.

The dissertation presents four main contributions supported by physical rendering

processes that span the extended reality continuum. To begin, I present a systematic

design exploration of the first 3D printed spatial data physicalizations encoding scalar

data as glyphs on a 3D surface using traditional, forward physical rendering processes.

Then, I introduce a new, inverse physical rendering process, a software architecture

and user interface enabling the design of multivariate 3D spatial data visualizations

with handcrafted physical media. Combining the forward and inverse physical rendering

processes from the first two contributions, I penultimately present a new approach to

querying 3D spatial data using multi-touch input directly on a data physicalization.

Finally, I present the design and results of the first empirical study on the effectiveness

of data physicalizations for spatial data analysis tasks when compared with state-of-the-

art virtual reality and 2D geographic information science visualizations.

Multiple conclusions are drawn from the explorations into spatial data physicaliza-

tions and extended reality visualization. First, data physicalizations have the potential

to be more comprehensible than digital visualizations when completing spatial data anal-

ysis tasks, and such benefits are most likely tied to the act of physically touching the

data. Second, inverse physical rendering processes that encode digital data with el-

ements from the physical world bring a new level of embodiment to digital extended

reality visualizations, and they show many of the benefits of physicalization, potentially

through imagined touch. Lastly, new approaches that tightly integrate physicalizations

with digital interactivity lead to new opportunities for collaboration and engagement in

scientific sensemaking processes.
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For millennia, humans have used physical objects to help us make sense of the uni-

verse; from clay tokens representing trade and profit figures in Mesopotamia around 4000

BCE [Schmandt-Besserat, 2013] to Athenian citizens casting votes for political candi-

dates using colored stones [Boegehold, 1963], these physical objects have facilitated a

better understanding of the world by providing a graspable, tangible representation of

numerical quantities, abstract data, and models of physical phenomena. The use of phys-

ical objects has accompanied advances in the scientific method and scientific discoveries

developing new insights about complex concepts and phenomena, and communicating

these discoveries with others. From the 17th century onwards, physical objects have

been used to understand and teach the intricacies of human anatomy to provide con-

tinually better medical care [Riva et al., 2010]. In the late 1800s, physical objects were

essential to the discovery of the thermodynamic model of state; the thermodynamcist

Gibbs used these physical data representations to comprehend the nonlinear relation-

ships between volume, energy, and entropy [Kriz, 2007]. In the last century, physical

objects have been used in conjunction with advances in microscopy and imaging to

better understand macromolecules like myoglobin, which stores oxygen within animal

cells [Kendrew et al., 1958]. Physical data representations have remained a vital part of

our scientific sensemaking processes throughout their history, due in part to the range of

information that they convey through their geometric and material properties, and their

innate capacity to support tactile exploration and feedback: as naturally as we interact

with everyday objects in the real world, we can touch, hold, mark points with fingers,

and rapidly move and rotate physical data objects to develop a better comprehension of

the universe around us.

Today, Scientific Visualization based on computer graphics holds a similar value to

modern data-intensive1 scientific sensemaking processes that physical objects held prior

to the computational revolution. Scientific visualization is a research field devoted to

utilizing “the broad bandwidth of the human sensory system in steering and interpreting

the complex processes and simulations involving voluminous data sets across diverse

scientific disciplines.” [Nielson et al., 1997]. Generally, research in this field is advanced

through close collaborations between domain scientists and computer scientists. Do-

main scientists have driving grand challenges in their disciplines (e.g., developing more

sustainable energy solutions with biofuels, or understanding how Antarctic ice is melt-

ing), and computer scientists simultaneously advance the visualization field by developing

novel interfaces, techniques, and approaches to making the domain scientists’ data more

comprehensible and address their grand challenges.

Current widespread scientific visualization software (e.g., ParaView [Ahrens et al.,

1 Data-intensive computing, particularly scientific computing, frequently requires terabyte or petabyte
sized datasets that require special hardware and software to work with.
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2005], VisIt [Childs et al., 2012]) enables scientists to make queries into their data to

answer questions about, and develop better comprehension of the phenomena they are

studying: from seeding streamlines based on supercomputer simulations of ocean cur-

rent flow data for understanding the melting pattern of polar ice caps to distributing

glyphs based on nitrate levels in the ocean for evaluating the productivity of future

macroalgae farms supporting more sustainable energy solutions, this software has been

critical to understanding multivariate, time-varying 3D spatial data that are too large,

dense and complicated to make sense of without computers2. Most importantly, scien-

tific visualization software enables scientists to make queries in near real-time, providing

rapid feedback which is used to explore, to test theories, and to better comprehend their

data. Additionally, many scientific visualization software packages enable scientists to

visualize multiple variables simultaneously to better understand the relationships and

trends the data exhibit. Through the power of computer graphics, scientific visualiza-

tions make it possible to get information, and ultimately understanding, from the data

and relationships presented by modern scientific challenges.

Data physicalization takes a decidedly different approach to addressing the needs of

visualization stakeholders by encoding data with the geometry and material properties

of physical objects [Jansen et al., 2015]. Though the term “data physicalization” is

relatively new, it builds on ideas stemming from traditional physical sensemaking pro-

cesses: physical objects innately support certain interactivity and active perception like

touching, marking points, and manipulating, they enable us to depict and communicate

complex spatial data in a way that directly maps to physical space, and they take ad-

vantage of the multisensory nature of our human perceptual systems by leveraging both

visual and haptic senses and make it possible to use our embodied, human reference

frame to make size and distance judgments. Physicalizations also enable true, real-

world depth perception (as opposed to simulated depth in immersive digital displays),

they make data analysis more accessible to low-vision and blind users, and they can

better facilitate understanding and learning [Jansen et al., 2015].

The process of creating physical data representations is known as the physical ren-

dering process in the data physicalization literature [Jansen and Dragicevic, 2013, Djava-

herpour et al., 2021]. Current data physicalizations are most often created with physical

rendering processes that employ digital fabrication technologies like 3D printing, laser

cutting, and CNC milling, which are becoming increasingly cost-effective and easier to

use with the maker revolution [Willis, 2018]. Yet, despite their decreasing cost, their

possible benefits, and the historic precedent for their use, data physicalizations have not

2 Multivariate = multiple quantities at each data point,
Time-varying = data contains multiple frames in time,
3D spatial data = data that inherently have a structure defined in 3D space.
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been widely adopted in current scientific sensemaking processes.

Extended reality (XR) visualization is an active research area in computer science

aimed at making current computer graphics visualizations more graspable with additional

hardware and software to solve some key problems of “traditional” desktop computing

based computer graphics visualizations, and is also known as immersive visualization.

XR spans a continuum of display technologies ranging from entirely digital virtual reality

(VR) displays, to augmented (AR) or mixed (MR) reality displays that combine digital

and real-world physical elements, up to and including displays rooted in the physical

world [Milgram and Kishino, 1994]. In scientific visualization, a key advantage of using

extended reality is that it enables scientists to view their “3D data in 3D”, use spatial

input devices to interact with their data in ways that emulate everyday physical inter-

actions, and even engage the senses of touch or hearing, via haptics or sound [Bryson,

1996].

Today, XR scientific visualizations have in many ways surpassed the capabilities of

their previous counterparts, physical data representations. These visualizations enable

all the benefits of the best digital visualization software necessitated by today’s data-

intensive scientific sensemaking processes; they make interactive querying into large

datasets possible, and they can display 3D spatial data in 3D. In the last decade, interest

in XR visualization has become widespread across the sciences, and examples of XR

visualization usage can be found in geographic information science [Çöltekin et al., 2020],

biomedical science [Venkatesan et al., 2021], and even archaeology [Bonis et al., 2022].

However, despite technological advancements and growing adoption in real-world use

cases, digital XR visualizations remain inferior to earlier physical data representations in

some important aspects: Digital XR visualizations are highly interactive, yet they leave

out an important component of human perception and sensemaking: touch. Digital XR

visualizations enable scientists to rapidly work with terabytes of data at a time, yet they

often add layers of indirect input/output devices that distance users from their data.

Digital XR visualizations are frequently used to represent real-world phenomena, yet

they rarely incorporate real-world elements that would provide more channels in which

to encode the increasingly complex multivariate spatial data required by today’s science.

Notwithstanding their current limitations, digital XR visualizations continue to be a

growing part of scientific sensemaking processes, and practitioners in the field continue

to research, create, and implement new, more effective methods to visualize scientific

data.
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1.1 Physical Rendering Processes

Contrary to the digital rendering processes used by computer graphics visualizations

which are perceived by users with a 2D screen or XR display, physical rendering processes

make data “perceivable by bringing it into existence in the physical world” [Jansen and

Dragicevic, 2013]; these are the processes with which data physicalizations are created.

There are multiple emerging perspectives to considering the physical rendering process,

including the encodings and properties used [Hornecker et al., 2023], the design [Bae

et al., 2022], and the fabrication [Djavaherpour et al., 2021] of data physicalizations.

However, current perspectives of physical rendering processes are becoming insufficient

to describe the increasingly intertwined nature of digital and physical visualizations. As

they are currently defined, physical rendering processes explicitly take digital data and

create physical, real-world representations of them, but they do not consider using ele-

ments from the physical world in digital visualizations. If data visualization practitioners

are to truly leverage the possibilities enabled by encoding data with physical objects, the

definition of physical rendering processes must be broadened.

I propose a new, expanded definition of the physical rendering process in the context

of data visualization where data coexist between the physical world and digital world:

Physical rendering processes enable digital data to be
visualized in the physical world, and they make it pos-
sible for elements from the physical world to be used
in digital data visualizations.

Physical

Rendering

Process

Digital

World

Physical

WorldInverse

Forward

Figure 1.1

This new definition, shown in Figure 1.1, encompasses a future of data physicaliza-

tion for scientific sensemaking processes where the digital and physical elements of a

visualization are tightly integrated like the extended reality visualization in Figure 1.2

and those contained in Chapter 5. In these novel examples, the digital data are trans-

formed into the physical world via data physicalizations, and elements from the physical

world are used to encode data in digital extended reality visualizations.

The new definition is a superset of the original; it equivalently encompasses prior

work including static physicalizations that are only rendered a single time through digital

fabrication, active physicalizations which update and re-render their physical geometry

based on interactions or changes to the data, and even augmented physicalizations that

utilize both physical and digital components. The largest change from prior definitions

comes into play when elements from the physical world are explicitly used to visual-
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ize digital data, as in the Artifact-Based Rendering technique [Johnson et al., 2019b],

which make it possible for designers and artists to handcraft data encodings with physi-

cal media to use in extended reality visualizations. Ultimately, this definition anticipates

the future of extended reality visualizations where the boundaries between the digital

and physical are blurred: where scientists can directly touch a data physicalization to

make queries into their 3D multivariate spatial datasets, and query results are displayed

as digital extended reality visualizations blended with the physicalization; where artists

collaborate with scientists to make the most comprehensible and engaging visualiza-

tions using materials directly from their studios; and where the benefits of both highly

interactive digital visualizations and embodied physical visualizations are shared by all.

1.2 Towards More Graspable Data

Prior work in both extended reality visualization and data physicalization (by using

physical rendering processes) has pursued the goal of making data more graspable.

There are two notable definitions for the word:

1. able to understand or comprehend : comprehensible

2. able to make concrete and perceptible; to exist in physical form : embodied

At a first glance, the scientific visualization and data physicalization communities

presently take very different approaches to graspability; scientific visualizations are fre-

quently focused on enhancing the comprehensibility of visualizations to enable domain

scientists to discover new insights about their multivariate time-varying 3D spatial data,

whereas most data physicalizations tend to focus on making the data appropriate for

presentation and communication or even enjoying the data in a casual setting [Pousman

et al., 2007]. Looking closer, we see that these definitions are not mutually exclusive; in

fact, in some cases data physicalizations are more comprehensible than their digital coun-

terparts while retaining the embodied advantages of physical, real-world objects [Jansen

et al., 2013, Danyluk et al., 2020].

Henceforth in this dissertation, I define graspable data to be data that are made

both more comprehensible and more embodied through physical rendering processes.

Physical rendering processes make data more comprehensible by leveraging the

multisensory perceptual benefits of physical objects. With physical data objects, it’s

possible for data stakeholders to take advantage of both visual and haptic senses to

actively perceive the data’s shape by touching, holding, and running multiple fingers

over the data, not to mention the additional material properties (such as squishiness or

texture) that can encode additional data variables. Beyond the benefits of direct-touch

6



interaction, physical data objects also enable us to make judgments of size and distance

using our own physical reference frame (e.g., marking points with fingers or using a hand

as a measuring tool) [Jansen et al., 2013]. Due to their existence in the physical world,

physical data objects additionally enable true depth perception, and are more accessible

to low-vision and blind users than digital displays [Jansen et al., 2015].

Physical rendering processes also make data more embodied by leveraging our lived

experience in the physical world to make data more relatable. We, as humans, are in-

timately familiar with the workings of the physical world; physical data objects provide

embodied interactions and affordances that we already understand, as opposed to learn-

ing new digital user interfaces to interact with the data using input and output devices.

Additionally, physical data objects offer cognitive benefits for learning and understand-

ing. In one view of embodied cognition, off-loading cognitive work into the environment

is a common strategy that can be applied to data analysis with physical objects, for

example, using body movements to minimize the amount of memory required [Wilson,

2002]. Ultimately, physicalizations have the potential to make data perceivable and

engage audiences in ways digital data displays alone cannot, through their embodied

form factor [Jansen et al., 2015].

Consider the extended reality visualization in Figure 1.2. This visualization enables

collaborators to comprehend a multivariate time-varying 3D spatial dataset by using

embodied interactions to make sense of ocean current flows and chlorophyll densities

in relation to the depth of the ocean and other variables. The physical object encoding

ocean depth data provides a natural interaction to touch points of interest, for example

to mark depth at one point and compare with another. It also gives a physical refer-

ence frame as an object of common discussion amongst collaborators, enabling multiple

individuals to refer to the same location on the physical data object with certainty. Ad-

ditionally, the augmented reality visualization affords 3D depth cues much like the real

world, enabling collaborators to look around the visualization, and get closer or farther

away as they would with any physical object.

While a handful of individual examples exist of visualizations in the style of Figure 1.2

that combine both dimensions of data graspability (e.g., Tangible Landscape [Millar

et al., 2018], Planwell [Nittala et al., 2015]), scientific visualization and data physical-

ization as a whole have yet to take a methodical approach to advancing visualizations

that are both comprehensible and embodied.
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Figure 1.2: Collaborators examine an extended reality visualization of biogeochemistry
data in the Gulf of Mexico showing nitrate and chlorophyll densities as well as ocean
currents. The ocean depth data is encoded with a data physicalization and the current
streamlines and density glyphs are encoded as a digital immersive augmented reality
overlay.
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Figure 1.3: This dissertation seeks to make XR visualizations more graspable in four
facets: data encodings, embodiment, interactivity, and evaluation of comprehensibility.
Dotted arrows indicate the contribution of the dissertation along each facet, and the
dashed line indicates the state of research prior to this work. I address the limitations of
current data physicalizations (top) and current XR scientific visualizations (bottom) by
introducing physical rendering processes for more graspable XR visualization (middle).

1.3 Conceptual Framework and Thesis Statement

This dissertation explores new approaches to making XR visualizations more graspable by

using physical rendering processes. The conceptual framework encapsulates four facets

of this work: data encodings, embodiment, interactivity, and evaluation of comprehensi-

bility. The contributions in this dissertation advance each facet along the orange arrows

shown in Figure 1.33, towards mixing digital and physical data encodings, supporting

physical and embodied interactions, enabling interactive data exploration, and better

understanding the comprehensibility of data physicalizations through evaluation.

This work advances the data encodings facet by addressing the limited physicality of

current XR scientific visualizations, and addressing the limited interactivity of current,

typically static data physicalizations. The work includes multiple examples in the style of

Figure 1.2 that use physical rendering processes to blur the lines between physical data

encodings and digital data encodings: adding digital interactivity and extended reality

graphics to data physicalizations, and using physical elements from the real world to

encode digital data.

This work advances the embodiment facet by enabling physical, embodied interac-

3Bottom image from [El Beheiry et al., 2019], top image from [Madsen, 2018] and © the respective
authors. Middle images from the author’s work, © 2021.
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tions with data. While current XR scientific visualizations (Figure 1.3 bottom) aim to

emulate the physical interactions afforded by objects in the real world; even the best

such examples lack the ability for users to run multiple fingers over a data object to

touch, mark points, and use our human embodied reference frame to make judgments

of size and distance. The dissertation includes examples that are created with physical

rendering processes, ranging from physical interactions with scalar fields superimposed

on a 3D surface to physical multi-touch gestures that interact directly with 3D data.

This work advances the interactivity facet by enabling interactive exploration on spa-

tial data physicalizations. While current data physicalizations (Figure 1.3 top) naturally

support passive interactivity like moving the data around, yet these physicalizations lack

the interactive exploration tools like querying and filtering necessary for today’s scien-

tific sensemaking processes. The dissertation includes new approaches to sensing and

reimagining classic exploration-oriented scientific visualization queries in the context of

data physicalizations created with physical rendering processes.

Finally, this work advances the evaluation of comprehensibility facet by introducing a

new evaluation for comparing user performance on spatial data physicalizations. There

are many current examples of data physicalization in the literature, but for all their

hypothesized benefits, there have been few evaluations that substantiate the purported

benefits. Current XR scientific visualization systems and techniques are comparatively

well-evaluated, with time, errors, and confidence being frequently used metrics to com-

pare user and algorithm performance between techniques. This dissertation includes

an evaluation comparing performance metrics of users completing spatial data analysis

tasks on data physicalizations, with VR visualizations, and with 2D visualizations. Since

this is the first such study, but we note that there’s still much work to be done before

the comprehensibility of data physicalizations is evaluated to a level matching XR visual-

izations. Nevertheless, we advance this facet to better understand the comprehensibility

of data physicalizations.

Altogether, in this dissertation I present new approaches to each of these facets that

use physical rendering processes to overcome the limitations of current data physical-

izations and extended reality visualizations, and to make data more graspable – both

more comprehensible and more embodied.

New approaches to extended reality visualization that encode data using

physical rendering processes enable better comprehension of and more

embodied relationships with spatial data by leveraging the perceptual benefits

and tactile interactions that are missing from current digital visualizations.
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1.4 Key Contributions of this Dissertation

In this dissertation, I present the following contributions for making data more graspable

using extended reality visualization:

• A systematic design exploration of the first 3D printed visualizations encoding

scalar data as glyphs on a 3D surface.

• A software architecture and user interface enabling the design of multivariate 3D

spatial data visualizations using handcrafted physical media.

• A new approach to querying 3D spatial data using multi-touch input directly on

a data physicalization.

• An empirical study on the effectiveness of data physicalizations for spatial data

analysis tasks when compared with state-of-the-art virtual reality and 2D geo-

graphic information science visualizations.

1.5 Overview of the Dissertation

This dissertation is organized as shown in Table 1.1. Chapter 2 presents related work

on making data more graspable with physical rendering processes. Chapter 3 presents a

systematic design exploration of a new type of data physicalization, using physical ren-

dering process to transform digital data into a data physicalization. Chapter 4 presents

an inverse approach to the physical rendering process where physical artifacts from an

artist’s studio are used as visual encodings in a digital data visualization. Chapter 5

presents a new approach to making data physicalizations interactive by tightly inte-

grating digital and physical visualizations with extended reality. Chapter 6 presents an

empirical evaluation comparing user performance between visualization modalities: 2D,

VR, and data physicalization. Finally, Chapter 7 concludes the dissertation with dis-

cussions on the lessons learned from the chapters, and the future of physical rendering

processes for making extended reality data visualizations more graspable.

The work contained in Chapters 3-6 of this dissertation is the result of multiple

projects among various groups of multidisciplinary collaborators, mentors, and students.

I acknowledge these individuals and collaborations at the beginning of each chapter via

footnotes, and I provide references to each work published with my co-authors.
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Ch. Data Source Phys Rend

Process

Data Presentation

Modality

3 Generated, representative of
medical data

Forward Data Physicalization

4 Physical phenomena via remote
sensing, supercomputer
simulation

Inverse Digital VR visualization

5 Physical phenomena via remote
sensing, supercomputer
simulation

Both Digital immersive AR
visualization, data
physicalization

6 Physical phenomena via remote
sensing

Forward Physicalization, 2D
desktop, Fishtank VR

Table 1.1: Chapters 3-6 are organized by their usage of physical rendering processes.
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2.1 Making Data More Comprehensible

In Chapter 1, we encountered multiple approaches to making data more graspable

through physical rendering processes. In this chapter, I provide related work on the

overarching topic of making data more graspable, while related work specifically related

to each chapter may be found within that chapter.

One of the ultimate goals of research in visualization is to make data more compre-

hensible. That is, visualization “provide[s] visual representations of datasets designed to

help people carry out tasks more effectively.” [Munzner, 2014]. In this section, we review

different approaches to making data more graspable, including designing visualizations

to be more comprehensible, and changing the visualization modality to better suit the

data; for example, using immersive digital visualizations for 3D spatial data.

2.1.1 Visualization Design

The design of visualizations is essential to their utility for making data more comprehen-

sible. Since the beginning of visualization research, many guidelines have been developed

for designing effective visualizations, including use of color, texture, symbols and glyphs,

animation, and 2D vs. 3D modalities, just to name a few. Until recent decades, research

in to the design of visualizations was largely focused on novel proofs of concept, and

few rigorous scientific evaluations of visualization techniques and software existed prior

to the year 2000 [Kosara et al., 2003]. Today, the basis of visualization research has

shifted to empirical evaluation techniques, and a majority of current visualization design

recommendations come from user studies about how humans perceive data. Taking a

different approach to visualization design, artists have been involved in visualization as

well: from Leonardo da Vinci’s drawings visualizing concepts far ahead of their time [Ka-

plan, 1997] to present-day conferences that share the latest works combining art and

visualization (e.g., the IEEE VIS Arts Program), “renaissance teams” of artists, scien-

tists, and technologists collaborating to make visualizations have had extensive success

stories throughout their history [Cox, 1991]. There are too many facets of designing

visualizations to fully enumerate here, so in this section we focus the discussion on the

design aspects most relevant to the Chapters in this dissertation, including the use of

color and glyphs. We discuss color and glyphs from both a perceptual science stand-

point (making visualizations more comprehensible) and an artistic standpoint (making

visualizations more relatable), and we note that considerations brought up by both of

these viewpoints are rarely mutually exclusive; in fact the visualization design decisions

made by artists’ expertise are often validated by perceptual science [Samsel et al., 2015].
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Color

Color is one of the comprehensible and most widely used techniques to encode variables

in both spatial and non-spatial data, and thus it has received a correspondingly large

amount of attention and evaluation in the literature. Frequently, data are encoded via

colormaps that vary luminance, saturation, and/or hue to represent specific data values,

and a majority of research on color in visualization is devoted to devising “optimal”

colormaps for particular datasets. While it is unlikely that a colormap exists that works

equally well for all datasets [Samsel et al., 2019b], numerous user study experiments

have been conducted to elucidate various properties about color in individual contexts,

such as univariate colormaps [Ware, 1988] and foreground vs. background color [Wang

et al., 2008]. There is also precedent for numerically optimizing colormaps based on

perceptually-defined color spaces (e.g., CIELuv) [Fang et al., 2017]. Furthermore, there

exist many surveys on the usage of color in visualization [Silva et al., 2011, Zhou and

Hansen, 2016] which provide guidance for the design of colormaps

Complementing the perceptual science approach to color, artistic color theory has

also been applied to make visualizations more comprehensible to scientists and the

public. In 1988, the artist Donna Cox developed groundbreaking colormaps to encode the

high-dimensional simulation results produced by a supercomputer [Cox, 1988]. Recent

research by Samsel et al. has shown that certain colormaps are not only better to

use for certain datasets from a pure perceptual standpoint but also provide affective

and associative cues that intuitively indicate what colormaps are representing [Samsel

et al., 2019b, Samsel et al., 2018a]. There have also been many guides for artists and

visualization practitioners on effectively applying principles from artistic color theory to

visualizations [Rhyne, 2012]. In Chapter 4, we build on the related work in artist-designed

colormaps for scientific visualization.

Glyphs

Glyphs are particularly useful technique for encoding discretely sampled variables at spe-

cific points in spatial data visualizations while also enabling visual inspection at different

scales [Kindlmann and Westin, 2006]. In particular, glyphs are ideal for depicting multi-

ple variables at once, for example pressure and temperature [Lie et al., 2009]. There are

various styles of glyphs, including geometric primitives like those found in general purpose

visualization software [Ahrens et al., 2005, Childs et al., 2012], superquadrics [Schultz

and Kindlmann, 2010], and more novel forms like flowers [van Onzenoodt et al., 2022]

or faces [Morris and Ebert, 2000]. Glyphs have been used for many types of domain-

specific data, but one application area that’s received special interest for glyph-based

visualization is diffusion-tensor medical imaging [Zhang et al., 2016, Kindlmann and
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Westin, 2006, Schultz and Kindlmann, 2010]. Direction-based glyphs are ideal for this

domain because of their ability to depict the individual axes of each tensor along with

additional variables like the density value [Kindlmann and Westin, 2006, Farooq et al.,

2016]. Glyphs ultimately work towards making complex, multivariate data more com-

prehensible and the existing examples so far in the literature provide a start to rigorous

evaluation for glyphs, but as a past survey points out, there are still many open questions

regarding the ideal glyph design for individual datasets [Fuchs et al., 2017].

Beyond the computationally-defined techniques above, artists have worked in parallel

to create glyph-based visualizations as well. Keefe et al. describe a four-stage approach

to leveraging artists’ expertise in visual design for scientific visualizations, including

rapidly sketching glyphs designs first on paper then in virtual reality to afford better

comprehension of spatial, multivariate data [Keefe et al., 2008a]. Similarly, Visualization-

by-Sketching enables artists to directly sketch glyphs onto a 2D spatial data visualization

using a digital stylus [Schroeder and Keefe, 2016]. Work has also been done to evaluate

the affect and associative relationships of different artist-designed 3D glyph styles; similar

to affective color, the goal of this work was to enable the use of different glyphs for

semantic and emotional meanings to make 3D spatial data visualizations [Zeller et al.,

2022]. The Artifact-Based Rendering technique (ABR) enables an artist to create 3D

glyphs out of physical materials in their studio (e.g., clay, pebbles, rice), transfer the

glyphs into a digital format, and use them to encode data [Johnson et al., 2019b]. This

groundbreaking technique for leveraging artists’ training and expertise in visual design

is the starting point for our work in Chapter 4.

Ultimately, scientific visualization uses color, glyphs, and many more visualization

design techniques and more to make data more comprehensible. Color can be combined

with texture to show fluid flow simulation results [Laramee et al., 2004b], stream surfaces

and streamlines can be extracted from similar flow data [Laramee et al., 2004a], and

streamlines with varied thickness can be combined with glyphs, color, and texture to

make more effective weather maps with wind direction markers [Pilar and Ware, 2013].

Glyphs can be combined with streamlines and cutting planes to highlight and filter

complex vector fields [Stevens et al., 2020]. Others have even established perceptual

guidelines for creating volumetric visualizations of 3D spatial data based on empirical

user studies [Boucheny et al., 2009]. These works are by no means a comprehensive list

of the techniques and tools available to scientific visualization practitioners, but they

show a bird’s eye view of the techniques that are most relevant to the remainder of this

dissertation.
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2.1.2 Extended Reality Visualizations

Extended reality visualizations are particularly well suited to visualizing 3D spatial data

like those found in many scientific disciplines today; they are able to depict these data

without projecting them into 2D, which is often crucial for comprehending complicated

physical phenomena that domain scientists are trying to understand [Bryson, 1996].

Virtual reality, even from its early days, has enabled scientists to view their 3D spatial

data (e.g., physics data [Bryson, 1992] or fluid flow analysis [van Dam et al., 2002])

immersively by using natural head movements, and enables better data understanding

through interactive querying, filtering, and moving the data around via spatial input

devices like wands [Cruz-Neira et al., 1993] or gloves [Fang et al., 2015]. Today, virtual

reality also enables data analysts to better understand statistical and other non-spatial

data via immersive analytics [Fonnet and Prie, 2021]. Augmented and mixed reality

afford even more of a real-world experience to users by showing digital content overlaid

on top of the physical world; this enables spatial experiences to involve components from

the real world, usually tangible props, for example paper image targets [Bach et al., 2018]

or writing utensils [Bobrich and Otto, 2002].

Even though there are solutions in AR and VR that provide some level of tactile

feedback – for example, haptic rendering devices like robotic styluses [Laycock and Day,

2007] – in general these only provide a low resolution glimpse into the data (i.e., only

one point at a time) and require expensive, custom hardware. These robotic, actuated

solutions may have a promising future to achieve real-time, high-resolution, low-latency

physical display of data, but these are not yet at the point where they’re feasible to use as

a part of scientists’ everyday sensemaking processes due to their associated specialized

hardware and software costs.

As a result, the most widely adopted examples of extended reality visualization in the

sciences rarely use even the simplest of these attempts at recreating the tactility privi-

leged by physical sensemaking processes. In fact, multiple recent survey papers across

various scientific disciplines (e.g., geographic information science [Çöltekin et al., 2020],

biomedical science [Venkatesan et al., 2021], and archaeology [Bonis et al., 2022]) show

exclusively examples that only utilize the built-in controllers that ship with commercial,

off-the-shelf extended reality devices. While the standard controllers are usually the

most cost-effective solution, they lack the capacity to support the type of exploration

and tactile feedback that even simple everyday physical objects exhibit in the real world.

Thus, we are motivated to explore extended reality visualizations that use physical ren-

dering processes to enable embodied interactions like touching, moving and rotating,

and running multiple fingers across the data to enable better comprehension of data in

scientific sensemaking processes.
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2.2 Tangible and Embodied Interaction

The work in this dissertation also builds on the field known as Tangible and Embodied

Interaction (TEI). TEI focuses on the “implications and new possibilities for interacting

with computational objects within the physical world” [Hornecker, 2011]. Though it

is a relatively new as a research area, TEI has a rich history combining work from

such fields as cognitive science, industrial design, the arts, and computer science to

create tangible, embodied interactions with computers and data [Hornecker and Buur,

2006]. TEI builds on the theories of embodied cognition, in particular the view that

the physical world and environment plays a crucial role in how we, as humans, think

about and perceive information [Wilson, 2002], and holds many of the same principles

true as data physicalization does: TEIs and physicalizations are both located in physical

space, and they share this space with users, affording interactions that are experienced

in relation to the user’s body [Hornecker et al., 2023]. We also note that TEIs share a

common motivation with extended reality visualization and immersive analytics, namely

the key sense of “embodiment” that walking around the data or moving the data in

relation to oneself can provide [Büschel et al., 2018].

Tangible User Interfaces (TUIs) are an example of a technology that enables Tan-

gible and Embodied Interactions. Early pioneering works from the literature include

Bricks [Fitzmaurice et al., 1995] and Tangible Bits [Ishii and Ullmer, 1997], which both

show capabilities for blending the digital and physical worlds far beyond their time,

using every day physical objects instrumented with trackers to control digital content.

More recent examples from the literature include everything from combining TUIs with

virtual reality to make the VR experience more embodied [Chang et al., 2017] to new

teaching tools to demystify machine learning algorithms [Kaspersen et al., 2021]. These

examples all leverage users’ relationships with physical objects in the real world to make

interactions with digital content more embodied and relatable [Shaer and Hornecker,

2010].

Inspired by successful examples of TEIs from non-visualization contexts, the data

visualization research community has also adopted principles from TEI to interact with

data via physical props. Usually, these props are an abstract representation of a 3D cursor

that can make queries or annotations in space, for example using a physical pen to make

AR annotations on a map [Bobrich and Otto, 2002], filtering 3D scatter plots in AR

with physical cutting planes [Bach et al., 2018], manipulating and querying geophysical

data with a physical globe [Satriadi et al., 2022], and using the affordances of a physical

piece of paper to zoom, filter, and add details on demand to AR visualizations [Tong

et al., 2022]. In these typical usages of TEIs for visualization, the tangible objects enable

a new level of physicality to otherwise entirely digital data displays, but the focus of the
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visualization remains on the digital data, and the TEIs rarely encode data themselves.

Data physicalization takes TEIs with data to a new level, enabling users to explore

the data through movement in relation to their own embodied reference frame, taking

advantage of the ability to measure distance with body parts, to change perspective

by physically moving the object or self, and to walk through a visualization [Hornecker

et al., 2023]. This enables users to take advantage of active perception while explor-

ing the data, which is beneficial to comprehending data due to visual perception being

highly integrated with movement and haptic perception [Gibson, 2014]. Additionally,

data physicalizations enable users to perceive the data with unambiguous stereoscopic

depth cues (i.e., the real world), as opposed to the simulated depth cues provided

by digital extended reality displays, which can be incorrect for many reasons, includ-

ing the accommodation-vergence conflict [Kramida, 2016] and incorrect inter-pupilary

distance estimations [Best, 1996]. Beyond their perceptual and cognitive advantages,

data physicalizations also enable many implicit advantages by their use of physical ob-

jects: improved memorability [Lederman and Klatzky, 2009], emotional connection with

the data [Wang et al., 2019], social connection with other individuals discussing the

data [Hogan and Hornecker, 2012], and rich metaphors enabled by their material prop-

erties [Hornecker et al., 2023]. In this dissertation, I aim to take advantage of the prior

work on both data physicalizations and Tangible and Embodied Interactions as a whole,

looking at these works through the lens of creating more comprehensible and embodied

visualizations with physical rendering processes.

2.3 Physical Rendering Processes

In this section, we discuss the related work on bringing data into the real world through

the lens of the expanded definition of the physical rendering process introduced in Chap-

ter 1. To begin, we contrast this definition with related concepts from extended reality

and computer graphics literature.

The process of bringing data into the physical world is distinct from haptic render-

ing originating in the extended reality literature [Salisbury et al., 2004] and physically-

based rendering (PBR) from computer graphics [Pharr et al., 2016]. Haptic rendering

attempts to replicate the tactile feedback experienced with physical objects by using

complex actuation mechanisms like robotic gloves [Fang et al., 2015] or force-feedback

styluses [Jackson et al., 2012a], and while some of these technologies enable a passable

approximation of touching a physical object, they are not at a point where they support

rich touch interactions like those enabled by physical objects, such as holding, rotating,

marking multiple points, and using our embodied reference frame to make size and dis-
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tance judgments. Physically-based rendering uses the mathematical expression of laws

of physics to generate realistic computer graphics images, and while these techniques

have produced stunning digital images that can fool the viewer into believing they were

taken in the real world [Ulbricht et al., 2006], the focus of PBR is specifically on the

creation of digital images and does not encompass making any images or data physical.

With these distinctions in mind, we introduce related work on the “forward” physical

rendering process of making data physicalizations through digital fabrication technolo-

gies, as well as the “inverse” physical rendering process of bringing elements from the

physical world to life in digital visualizations.

2.3.1 Forward: Digital to Physical

Data physicalizations are most commonly a “one-shot” through the physical render-

ing process. That is, these static, passive physicalizations take one instance of one

dataset at one moment in time and bring it into the physical world through digital fab-

rication [Jansen and Dragicevic, 2013]. Examples in this style include molecular data

physicalizations [Bailey et al., 1998], data furniture [Duffy, 2014, Segal, 2011], and

sculptures depicting flight data [Spitz, 2013] or physical activity data [Stusak et al.,

2014]. While technically only “rendered” once, other physicalizations incorporate in-

teractions with the environment they’re situated in, such as wind sculptures [Kahn,

1996] and living physicalizations using plants [Meier, 2017, Sigitas Guzauskas, 2018].

Lastly, some physicalizations feature manual physical interactivity such as rearrangeable

parts; for example Vologram enables data stakeholders to view an entire volumetric

visualization or individually view slices along three axes by pulling them out of the vi-

sualization [Pahr, 2021]. Our work in Chapters 3 and 6 fall into the static or passive

category of physicalization.

In contrast to these passive physicalizations, active physicalizations have been in-

troduced to enable user interactivity and animation capabilities like those frequently

necessitated by today’s purely digital visualizations. In the early 2000s, a prototype ac-

tive physicalization that featured moving, actuated vertical columns augmented was used

for depicting solid terrain models; this apparatus was augmented with a digital projec-

tion that enabled further data to be displayed on the dynamic physical surface [Schmitz,

2004]. Similar active, robotically actuated approaches have been used since then for sim-

ilar terrain visualizations [Follmer et al., 2013] and analytics of statistical data [Taher

et al., 2016]. Other types of active physicalizations also exist, including the use of

wheeled micro-robots that position themselves into visualizations on a tabletop [Le Goc

et al., 2019] and acoustic levitation of physical objects to form 2D or 3D visualiza-

tions [Omirou et al., 2016, Gao et al., 2023]. These impressive active physicalizations
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are changing the way we physicalize data, but they presently are quite expensive and

difficult to create, calibrate, and maintain due to the sheer number of moving parts in-

volved (for example, the EMERGE display used in [Taher et al., 2016] uses a 10x10 grid

of actuated columnar “pixels” that draw a significant amount of current and are prone

to overheating). In this dissertation we turn to other, more cost-effective approaches

that are presently easier to fabricate and maintain.

An alternative to active physicalizations that still enables interactivity and dynamic

content on physicalizations is augmented physicalizations. While many active physi-

calizations are also augmented with additional digital content (e.g., projection [Follmer

et al., 2013] or light [Taher et al., 2016]), it is more common for statically fabricated

physicalizations to be digitally augmented. Such is the case for Gillet et al.’s early molec-

ular model visualization that uses a webcam video feed to augment a physicalization

with additional, digital dynamic data [Gillet et al., 2005]. In the literature, projection

has been the most common means of augmenting a physicalization, likely due to its

innate capacity to support shared viewership that other technologies don’t have (e.g.,

immersive AR) [Djavaherpour et al., 2021]. Some examples of projection-augmented

physicalizations include TanGeoMS [Tateosian et al., 2010] and PARM [Priestnall et al.,

2012], which have been used for landscape modelling, as well as a visualization de-

picting energy usage [Kirshenbaum et al., 2020]. Mobile augmented reality can also

be used for visualization; for example, augmenting ring physicalizations with statistical

data [Bilgili, 2017] and touch-enabled glyph-based spatial visualizations [Chen et al.,

2020]. With the development and improvement over time of immersive AR devices,

examples of immersive AR augmentation are also becoming more prevalent, for exam-

ple PLANWELL [Nittala et al., 2015] uses a tracked physical model and immersive AR

visualization to facilitate more effective communication between teams for petroleum

well drilling projects. In our work, Chapter 5 uses immersive AR to augment a touch

sensitive data physicalization.

We also note that some definitions of data physicalization are more restrictive than

others. For example, some definitions would not consider the physical digital elevation

data like those presented in Chapter 6 data physicalizations; rather, it could be consid-

ered a physical model [Dragicevic et al., 2021, Jansen et al., 2015]. We argue that even

physical objects representing “simple,” single-variable spatial data like digital elevation

data would be considered a data physicalization; after all, it uses the geometric and

material properties of a physical artifact to encode data [Jansen et al., 2015]. Thus,

we adopt a less restrictive definition for the rest of the dissertation: any physical object

that encodes data of any kind with its geometry or material properties is considered a

data physicalization.
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2.3.2 Inverse: Physical to Digital

In addition to the “forward” physical rendering process of bringing digital data into

the physical world via data physicalization, this dissertation also explores the “inverse”

physical rendering process where elements from the physical world are transformed into

the digital domain and used as encodings in digital data visualizations. Inspired by artistic

work created with physical media like that of Nathalie Miebach [Miebach et al., 2022],

the inverse physical rendering process aspires to enable a richer visual vocabulary in data

visualization by meeting artists where they’re frequently the most comfortable working:

in the physical world. Work in the style of Scientific Sketching [Keefe et al., 2008a] and

Artifact-Based Rendering [Johnson et al., 2019b] has made it possible for artists in their

studio to quickly create hundreds of design iterations on the design of even a single data

variable with physical media they work with on a daily basis. This not only expands the

visual vocabulary for scientific visualization but also – through informed use of color, line,

texture, and form – has the potential to enable scientists to comprehend more of their

data, more effectively, and in a more embodied way [Johnson et al., 2019b]. Chapters 4

and 5 elaborate on our notion of the inverse physical rendering process. Specifically,

Chapter 4 explains the process through which it is possible for artists to begin their

design process in the physical world, with physical media, and end with a multivariate

3D virtual reality scientific visualization, and Chapter 5 addresses the completion of the

cycle: rendering the artist-created physical artifacts back into the physical world using

immersive augmented reality.

Though not directly related to the work in this dissertation, Dietmar Offenhuber’s

concept of autographic visualization [Offenhuber, 2020] also fits into the inverse physical

rendering process. Autographic visualization takes physical phenomena, instead of data,

as the starting point in the visualization process. Whereas traditional data visualizations

take data recorded about a physical phenomenon through sensors, transform it digitally,

and finally re-create visual representations of the phenomenon in question, autographic

visualizations instead seek to utilize the physical phenomenon as data about itself. Au-

tographic visualization is still an emerging field, and though autographic visualizations

rarely end up in the digital domain, their applicability to our work is clear for their priority

of using physical processes to develop better comprehension about physical processes.

In summary, related work on data visualization has strived to make data more com-

prehensible through improvements to the design of visualizations through both empirical

means (user studies) and artistic means (artist training). And, through physical ren-

dering processes, we can make data more graspable in extended reality visualizations.

For the remaining chapters in this dissertation, we expand on the forward and inverse

physical rendering process for making data more graspable.
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3.1 Introduction

1So far in this dissertation, we’ve seen the important role that the science of data

visualization can play through collaborations with expert domain scientists to devise

more effective sensemaking processes. The work in this chapter is motivated by one

such collaboration between our visualization lab and a team of medical device engineers

studying the effects of heart implants on blood flow.

Frequently, medical device engineers like those we collaborate with need to visualize

variables in conjunction with the 3D spatial geometry; for example, they might choose

to visualize the blood pressure (scalar variable) overlaid on the surface of the right

atrium of the heart. Visualizing these data is especially challenging because of the 3D

spatial and multivariate nature of the data; typically 2D representations shown on a

desktop monitor with simple keyboard and mouse interactions are not sufficient for the

engineers to sufficiently answer their driving scientific questions [Nielson et al., 1997].

Some medical device engineers have turned to extended reality visualizations like virtual

and augmented reality [Venkatesan et al., 2021], while some even use advanced XR

technologies like haptic feedback [Jackson et al., 2012a] or physical props [Jackson et al.,

2013]. Yet, despite these technological advancements and new visualization techniques,

engineers still struggle to answer the questions they have of their data, which require

an intimate understanding of the 3D surface geometry and the data variables on top of

the surface.

We interpret the challenges visualization techniques have visualizing these data as

opportunities for data physicalization. In contrast to even the best extended reality

visual and haptic displays, data physicalizations provide zero-latency interactions with

data that are only limited in resolution by the fabrication device used; they also engage

the sense of touch and provide true stereoscopic depth cues. In this chapter, we present a

systematic design exploration of the first data physicalizations that combine 3D surfaces

with glyphs encoding a scalar field on the surface. This exploration is motivated by the

visualization needs identified by our collaborators, and builds on related work from the

scientific visualization, information visualization, and data physicalization communities.

3.2 Methodology

Our research explores the design space for spatial data physicalizations that overlay

scalar fields on 3D surface geometries and combines practices from computer science

1 This chapter is based on work published as a chapter in the Making Data book [Gwilt, 2022],
under the title Hybrid Data Constructs: Interacting with Biomedical Data in Augmented Spaces [Keefe
et al., 2022b], as well as a juried pictorial paper presented at the IEEE VIS 2018 workshop on data
physicalization [Herman and Keefe, 2018].
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research and design methodology. In particular, we begin with a process inspired by the

“Research through Design” framework [Zimmerman and Forlizzi, 2014], which we use

to guide our exploration and filtering of current visualization best practices for scalar

data and 3D surfaces.

3.2.1 Research Through Design

Research through Design (RtD) is a relatively recent reinterpretation of design practices

as applied to scientific research, specifically in Human-Computer Interaction; RtD “draws

on design’s strength as a reflective practice of continually reinterpreting and reframing a

problematic situation through a process of making and critiquing artifacts that function

as proposed solutions” [Zimmerman and Forlizzi, 2014, p. 167]. This chapter is focused

on a process of making and critiquing data physicalizations that advance the state of

visualization research and help address the needs of our collaborating medical device

engineers.

In the suggested RtD fashion, we begin the process by selecting the problem: phys-

ically render scalar fields in conjunction with 3D surfaces. Then, based on literature in

scientific visualization and data physicalization, we design several possibilities for visu-

alizing scalar fields on 3D surfaces. After fabricating a series of the design possibilities,

we evaluate the designs based on considerations from the literature and lab members’

expertise with scientific visualization. Lastly, we reflect on the effectiveness of each

design, and repeat the process with new physicalization designs.

3.2.2 Current Visualization Practice as a Starting Point

Our methodology begins with current visualization best practices. To inform the early

designs for data physicalizations that depict a 3D surface geometry and a scalar data

field, we began by identifying the axes of the design space based on prior literature in

the visualization community. We explored many options to visualize the scalar data

overlaid on the surface, including colormaps [Samsel et al., 2019b, Zhou and Hansen,

2016], glyphs [Ropinski et al., 2011, Ang et al., 2019], and even surface texture [Kim

et al., 2003, Johnson et al., 2019b].

We used Munzner’s consolidated effectiveness of visual channels [Munzner, 2014,

p. 102] as a starting point to show the design choices available for overlaying a scalar

field on a 3D surface From this list, we narrowed down the possible options to visualize

the scalar data on top of the surface. Since our use case (medical device engineering)

requires data that are inherently 3D and spatial, channels like position and depth are

unavailable to use. Due to limitations of the commercial off-the-shelf FDM printers used

during prototyping, other channels like color luminance and saturation are not available
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Figure 3.1: Current design for glyph-based spatial data physicalizations

either. Reducing the list to a bare minimum of feasible options for 3D spatial data and

the digital manufacturing technologies available, we ended up with the length, angle,

area, curvature channels. The channels used are discussed further in Section 3.3.

Based on the visual channels available, we determined that a glyph-based visual-

ization was a good fit for these scalar data, since glyphs can have length, angle, area,

curvature and properties. Glyph-based visualization is common in scientific visualiza-

tion. Typically, glyphs are used to depict multivariate or high-dimensional variables at

discrete, sampled points in a 2D or 3D visualization of spatial data. 3D glyphs have

taken forms like textured decals on a surface for depicting a scalar variable with a vector

variable [Rocha et al., 2017], superquadric geometric glyphs for depicting multiple scalar

variables simultaneously [Kindlmann and Westin, 2006], and other 3D objects overlaid

on a surface for visualizing multimodal volume data [Ropinski et al., 2007]. Based on

these options and other considerations like ease of interpretation [Lie et al., 2009], we

identify simple geometric glyphs placed on the 3D physical surface as a starting design

for physically rendering scalar fields on 3D surfaces. The remainder of the sections in

this chapter focus on this starting design: glyph-based spatial data physicalizations.
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Figure 3.2: The design space for glyph-based data physicalizations of scalar values on
3D surfaces includes: the channel used to convey the scalar variable (A), the glyph
shape (B), the absolute size and any size remappings applied (C), the alignment of the
glyphs relative to the surface (D), and the glyph distribution/placement on the surface
(E).

3.3 Designing Glyph-Based Spatial Data Physicalizations

Given the design considerations outlined so far from the literature, we created a design

space for glyph-based spatial data physicalizations. The design space, shown in Fig-

ure 3.2 includes five axes: the channel used to convey the scalar value (from Munzner’s

visual channels [Munzner, 2014]), and four axes inspired by the glyph properties out-

lined in previous literature [Ropinski et al., 2011, Lie et al., 2009]: glyph shape, glyph

size, glyph alignment on surface, and glyph distribution/placement. The remainder of

this section explains the design decisions made to arrive at the final glyph-based data

physicalization shown in Figure 3.1.
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A B C

D E F

Figure 3.3: Glyph shapes used in the design process and their corresponding visual
channels include: curves (curvature, A); boxes (angle, B); boxes (length, C); boxes
(height, D), spheres (area, E), and cubes (area, F).

3.3.1 Visual Channel

Based on the visual channels in Figure 3.2A, we created glyph-based data physicalizations

that used each of these channels to depict the scalar data field.

Initially, the area channel was used (Figure 3.3D and E). Area-based symmetric

glyphs are widely used in scientific visualization because they are well-suited to 3D

spatial data; they convey both the data value(s) and the point in space. However, they

make it difficult to interpret the true values of data due to the nonlinear perception of

size as a variable [Lie et al., 2009, Ropinski et al., 2011, Jansen and Hornbaek, 2016],

so ultimately we sought other channels.

Angle and curvature are also valid channels (Figure 3.3A and B) to encode data.

These channels are less common for depicting scalar fields scientific visualization because

they seem ill-adapted to spatial data, as they tend to convey directional information, as

opposed to the scalar value we are intending to show.

Lastly, the length channel tops Munzner’s chart on the perceptibility of visual chan-

nels [Munzner, 2014, p. 102]. Glyph length is often used in scientific visualization to

depict scalar data, and even parts of tensor data (e.g., medical imaging data [Kindl-

mann and Westin, 2006]). Figure 3.1 shows the current physicalization design using
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length-based glyphs depicting a scalar variable on a 3D surface.

3.3.2 Glyph Shape

The choice of glyph shape, shown in Figure 3.2B, depends heavily on the choice of visual

channel: notice in Figure 3.3C how the box-shaped glyphs are not able to represent

any curvature and still maintain their box shape, and spheres are not able to be used

for length, angle, or curvature. During design iterations, further concerns arose for

the use of spheres: some individuals seem to experience discomfort when viewing the

physicalizations that used spheres. This may have been triggered by trypophobia, the

fear of holes that can happen, for example, when looking at a honeycomb [Le et al.,

2015]. In our design iterations, the box-shaped glyphs did not induce such discomfort

on anyone who used them. Besides general user comfort, box-shaped glyphs are also

advantageous because they are able to reflect properties of the surface below them

instead of occluding them; for example, they can show the surface normal and gradient.

Ultimately, the current glyph design shown in Figure 3.1 uses box-shaped glyphs.

3.3.3 Glyph Size and Data Remapping

Before mapping any scalar variables to the size of glyphs, two important Prior work has

established that certain absolute glyph sizes are best to perceive; for 2D scatter plots

considerations need to be made: the absolute size of the glyphs, and any remappings

that should be applied to the data. For these considerations, we again turn to established

practices in the visualization community. Prior work has established that certain absolute

glyph sizes are best to perceive; for 2D scatter plots glyphs should have visual angles

between 0.072°and 0.573° [Li et al., 2010]. Interpreting these guidelines at a comfortable

examination distance of 25cm, our current glyph design ranges between radius 0.314mm

and 2.5mm.

Absolute radius being resolved, we now turn to the data mapping, shown in Fig-

ure 3.2C. It has also been established in the literature that symbol size is not perceived

linearly. In fact, for scatter plots with circular symbols, size judgments have been found

to follow a power transform of P = S2.5, where P is the value perceived by the user and

S is the original size value (radius of the symbol) [Li et al., 2010]. The size of spherical

physical data representations has been found to follow a power law of P = S1.6, whereas

physical bars can be treated with linear perception P = S [Jansen and Hornbaek, 2016].

The series of 3D prints showing comparisons of different sizes and power mappings can

be seen in Figure 3.2C, and the current design using the length of physical box-shaped

glyphs is shown in Figure 3.1.
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3.3.4 Glyph Alignment With Surface

The alignment of glyphs on the surface is also dependent on the type of glyphs used. For

example, spheres look the same regardless of the orientation they use on the surface,

whereas the alignment of cubes, boxes, and even more asymmetric shapes matters

significantly. Figure 3.2D identifies the three options for aligning 3D glyphs on a surface.

Axis-aligned glyphs are simple to implement, but the results show inconsistent parts of

glyphs other than spheres, and they don’t allow the glyph to reflect any information

about the underlying surface, which is important to the data stakeholders. Normal-

aligned glyphs reflect some additional information about the surface they are placed on,

and they give a true “outward” facing direction for any glyph shape including irregular

glyphs, but only specifying one basis vector for rotation leaves the glyph orientation

underconstrained. Thus, we introduce a second vector: the surface gradient at a given

point. In our current design, we use a technique inspired by Kim et al. [Kim et al., 2003]

to calculate the surface gradient in the principal direction. We also note that these glyph

alignments can be expanded or replaced if the data that need to be visualized are vector

data instead of scalar data.

3.3.5 Glyph Placement On Surface

The last key consideration for overlaying glyphs on a 3D physical surface is the place-

ment or distribution of the glyphs. Figure 3.2E shows four different options for glyph

placement. Glyphs may be sampled from a grid, but this has been shown to introduce

bias into interpreting the visualization results (e.g., if there is an important value that

was missed in between the grid points) [Laidlaw et al., 2005]. Jittered grids have been

used as a solution to the grid regularity problem, yet they often have similar flaws to

regular grids. An alternative approach is Poisson-Disk sampling, which provides sam-

ple points which are at least some distance r apart from one another [Bridson, 2007].

Poisson-Disk sampling can also be modified to function as a data-driven placement al-

gorithm; glyphs can be packed near each other based on their size (similar to glyph

packing, as in [Kindlmann and Westin, 2006]).

3.4 Fabricating Glyph-Based Spatial Data Physicalizations

The process for fabricating the glyph-based physicalizations can be seen in Figure 3.4.

Starting with Blender Python scripts2, a visualization designer can tune the glyph design

parameters including the glyph shape, glyph size and data mapping, alignment with

2 Code can be found at https://github.com/ivlab/BoxcarPotatoes
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Figure 3.4: Fabrication of the designs took a four step process: (1) Blender scripts are
used to generate 3D surface geometry and glyph overlays; (2) the scripts slice the potato
object in half for easy 3D printing; data objects are 3D printed using a multi-color FDM
3D printer (3), the final data object after post processing and securing the two halves
together (4).
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surface, and placement. The scripts automatically slice any overhanging geometry; for

example the current data physicalization shown in Figure 3.1 was printed in two halves

and secured together after printing. After the models are generated in Blender, they

can be exported to 3D printing slicer software and sent to the printer. Our fabrication

process uses a dual-extruder MakerBot printer.

3.5 Results and Discussion

Though the process of evaluating glyph-based data physicalizations is ongoing and thus

far we’ve only consulted on the designs with visualization experts from our lab, we can

already report a few key findings from early lab feedback and justification from the

literature.

Firstly, when visualizing a single variable with physical glyphs on top of a physical

surface, it is best to use primitive shapes (i.e., spheres, boxes). In our design explorations,

we found that other shapes (e.g., the “macaroni”-like curved glyphs in Figure 3.3) did

not work very well to depict data and were distracting from both the scalar data they

were attempting to encode and also occluded the underlying surface without providing

any indications for what the surface normal or gradient was underneath each point.

These findings mirror the suggestions of Lie et al. [Lie et al., 2009] regarding glyph

design best practices.

Secondly, care needs to be taken when using the size of glyphs to encode a data

value, especially in the physical world. In the psychology literature it is well known

that area is not perceived linearly (e.g., Stevens’s power law); and the same applies to

digital visualizations [Li et al., 2010] and data physicalizations [Jansen and Hornbaek,

2016] as well. Ultimately in our current design, we used the length of the glyph to

encode the scalar variable rather than the radius or area of the glyphs, which literature

indicates is perceived nearly linearly both on digital and physical visualizations [Jansen

and Hornbaek, 2016, Munzner, 2014].

Thirdly, care must also be taken when choosing a sampling method to place glyphs

on the surface. Many sampling methods are available, like those shown in Figure 3.2E.

In our testing we found that Poisson-Disk sampling with a fixed radius worked well for

our use cases, but for more complicated data it may be necessary to resort to glyph

packing or other placement methods [Kindlmann and Westin, 2006].

Lastly, since glyphs placed on a surface occlude part of the surface, it becomes

necessary to find ways to convey information about the surface underneath on the

glyphs themselves. In the style of Kim et al. [Kim et al., 2003], our current design

aligns the glyphs with the surface normal at the sampled point, as well as the primary

32



gradient direction of the surface underneath to give the viewer more information about

the surface instead of only occluding it. An alternative method would be to extrude

parts of the surface directly where the glyphs intersect; this would provide an exact

replication of the important surface geometry below each glyph, but may introduce

additional confounding factors if it is unclear where each glyph ends and the surface

begins.

3.6 Conclusion

In this chapter, we methodically explored the design space for the first glyph-based

spatial data physicalizations. Starting with findings from current visualization and data

physicalization literature, we sought to devise a new type of physical data representation

that would help address the needs of our medical device engineering collaborators. Our

collaborators already use 3D printing to better understand anatomical surfaces, such as

the patient-specific shape of the heart, but the utility of these prints is limited relative

to VR visualizations because only the surface is physicalized. We foresee that as 3D

printers become even more common and cost-effective, printing additional data on top

of these surfaces will prove to be a helpful means for better comprehension of complex,

multivariate, spatial data like those that our collaborators require. Finally, we note

that using physical rendering processes to physicalize scalar spatial data combined with

surface geometry data have the potential to make these data more graspable.
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Figure 4.1: A visualization of biogeochemistry data in the Gulf of Mexico (left), a close-
up view showing handcrafted elements of the visualization (center), and the visualization
design interface used to make this visualization (right).

4.1 Introduction

1Scientists and society as a whole have a serious need for artist-designed visualizations

which have a broad scope of visual vocabulary that enchants and enlightens viewers. The

necessity for artistic involvement in the visualization community has been substantiated

by numerous accounts, such as Cox’s work in visualizing high-dimensional spaces [Cox,

1988] and Samsel’s application of sophisticated artist-designed colormaps to highlight

crucial parts of a dataset [Samsel et al., 2018a]. Figure 4.1 (left and center) show a

small sample of the visual variety that is produced with an artist-designed visualization

of biogeochemistry data in the Gulf of Mexico, produced in collaboration with climate

scientists and computer scientists. However, achieving a high level of collaboration and

communication between technical and artistic fields has been difficult in practice due

to disparate vocabulary and differences in the process for investigating new information

in each field. Most traditional visualization software focuses on the technical utilities

of visualization, including data management pipelines and processing algorithms. While

these utilities are quite valuable, they also have a significant influence on the design

of the visualization software architecture they are encompassed in. Based on first-hand

comments from artists involved in data visualization, the visual design tools within these

data-first architectures are often limited in the visual vocabulary they can express [Sam-

sel et al., 2019a], and their user interfaces can introduce an additional cognitive load

which interferes with the creative process. In this chapter, we propose an alternative

architecture which better supports artistic methodologies for creating visualizations by

1 The latest version of the architecture and user interface is open source and available online at https:

//github.com/ivlab/ABREngine-UnityPackage. The visualization design interface in this chapter
originated from work published at the 2020 IEEE VIS Arts Program entitled Printmaking, Puzzles,
and Studio Closets: Using Artistic Metaphors to Reimagine the User interface for Designing Immersive
Visualizations [Herman et al., 2020], and exhibited during a virtual workshop at the 2020 IEEE VIS
conference [Keefe et al., 2020]. This work was accomplished in collaboration with members of the
Sculpting Visualizations Collective, including Seth Johnson, Annie Bares, Francesca Samsel, Greg Abram,
and Daniel F. Keefe.
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using physical rendering processes that start in the real world.

In Chapter 3, we saw a physical rendering process that takes digital 3D multivariate

spatial data and renders it using physical fabrication processes. The work in this chapter

takes an inverse approach: we start from handcrafted, physical media elements created

by artists and use them to produce visualizations with a broad scope of visual vocabulary

that enhances the comprehension of data and enchants viewers. Artistic engagement in

visualization shares many commonalities with data physicalization, including the use of

physical materials and processes during the creation of a work. In physicalization, we

generally interpret this need for physicality as a requirement to support the transferral

of visualizations and visualization elements from the digital into the physical.

However, many artists prefer to begin the creative process in the physical world,

working with physical materials and tools to produce their craft. This preference leads

to new challenges and opportunities for computer science and data visualization research:

How do we, as computer science researchers, meet artists halfway by enabling the use

of physical materials and media to render data visualizations? How do we support non-

linear, back-and-forth artistic processes for rapidly iterating through many visual designs

for individual variables on a complex multivariate 3D spatial data visualization, and how

do we enable artists to view their work with extended reality to see their 3D data in 3D?

And ultimately, how do we support the “inverse” physical rendering process of encoding

3D multivariate spatial data with elements from the physical world? These are all still

open questions in computer science and visualization research, and this chapter seeks a

possible solution for supporting artistic processes and methodologies in data visualization

by enabling the use of handcrafted physical media as visualization elements.

4.2 Related Work

4.2.1 Artistic Involvement in Data Visualization

Visualization has been a defining part of humanity’s sense-making practices, ranging

from ancient Mesopotamian tokens around 5500 B.C.E. [Schmandt-Besserat, 2013], to

Leonardo da Vinci’s work in visualizations that fused art and science, to the present-day

IEEE VIS conference where prolific visualization researchers come together to advance

the possibilities of the field. Artists have been involved in data visualization for as long

as the field has existed, and have lent their creativity towards better understanding of

and accessibility to complex data. One common thread throughout artists’ engagement

with data has been a preference for physical materials and processes, and when applied

to data this is known as data physicalization. Physicalizations are a diverse medium,

ranging from palm-sized sculptures showing world data as 3D printed crystals [Gross-
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man, 2002], to park-sized installations at all-night art festivals centered on climate

change [Swackhamer et al., 2017], to data-driven ice sculptures representing glaciers

that make viewers gasp as they melt [Segal, 2015]. They have the potential to make

data more comprehensible by leveraging both haptic and visual senses, and they have

even been shown to be faster and more accurate than some digital visualizations [Jansen

et al., 2013], and can create significantly more emotional engagement than digital visu-

alizations using metaphor, physical material properties, and embodied interactions with

the data [Wang et al., 2019].

Even when we cannot physically touch data physicalizations (i.e., if they are in

a display case, or experienced through a digital intermediary), their benefits are still

present through imagined touch [Peck et al., 2013]. Though imagined touch has been

primarily explored in the online retail context, it has been increasingly applied to data

physicalizations, with a recent physicalization survey noting that though the authors were

not able to physically touch most of the works surveyed, they found themselves discussing

the haptic qualities of the physicalizations anyway [Hornecker et al., 2023]. Although the

multisensory perceptual benefits of physicalizations cannot be replicated through digital

displays, with imagined touch we see that at least some of physicalization’s emotional

and embodied advantages remain. The work in this chapter build on this concept by

using inverse physical rendering processes to encode data in digital visualizations with

physical, real-world objects.

In tandem with artists’ engagement in physicalization and data visualization, there

have been technical developments to support creativity in the vast digital world. One

research area in Human-Computer Interaction that has emerged from the drive to sup-

port creative methodologies with technology is Creativity Support Tools, which strives to

remove as many barriers as possible for artists engaging with technology [Shneiderman,

2000], in essence “designing with low thresholds, high ceilings, and wide walls” [Shnei-

derman, 2007]. Common barriers that exist in technology for creatives are rigid and

inflexible user interfaces, and lack of access to prior examples of work [Shneiderman,

2002]. Several solutions to these issues have been addressed, including use of metaphor

and “fun” interfaces [Shneiderman, 2004], visual exemplars [Terry and Mynatt, 2002],

and sketch-based interfaces, which are an entire research area of their own. Creativity

Support Tools in visualization aim to not only to provide user interfaces that work for

the creative process but to actively promote the discovery of new visual combinations

that work to show data in a new light.
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4.2.2 Visualization Interfaces for Non-Programmers

Sketch-based interfaces have emerged as a key entry point for artists and other cre-

ative individuals to get involved in visualization design. Artists have previously used

sketch-based interfaces to prototype 3D visualizations [Keefe et al., 2005, Keefe et al.,

2008a], create custom illustrations of 2D fluid flows [Schroeder et al., 2010], sketch

free-form glyphs [Schroeder et al., 2010, Isenberg et al., 2008], and create multi-layered

animated 2D visualizations of a variety of datasets [Schroeder and Keefe, 2016]. The

visualization design user interface and architecture described in this chapter builds on

prior work in “sketching user experiences” by supporting flexibility and affording rapid

visual exploration of visualization designs [Buxton, 2010].

One no longer needs direct access to a supercomputer and need not be an expert

programmer to engage with data [Viégas and Wattenberg, 2007]; many tools now exist

that harness the power of traditional programming languages for visual design while

providing built-in commands that abstract common graphics code, making it easier for

non-programmers to write “creative code” to achieve powerful visual effects. One such

tool is Processing [Greenberg et al., 2013], which is based on the Java programming

language. Many art installations have used Processing for data visualization and back-

ground graphics, including Orbacles, where a Processing-based flock simulation was

projected on the ground [Keefe et al., 2022a] and city flows, which uses Processing to

visualize bike sharing data from three cities [Nagel and Pietsch, 2015].

Another approach to making computational visuals has been to avoid conventional

programming languages and opt for an entirely visual experience for users instead. The

Unreal game engine uses a node-based programming approach (“blueprints”) which

are in this style [Valcasara, 2015], and Blender’s compositor and material editor use

nodes to control the final look of a rendered piece of digital art [Vepakomma, 2014].

Another style of visual programming with puzzle pieces has been frequently used as a

learning tool for computational problem-solving, for example with Blockly [Pasternak

et al., 2017] and Scratch [Resnick et al., 2009]. The visualization design interface in our

architecture melds these two approaches, employing a puzzle-piece approach to building

visualizations.

4.2.3 Visualization Systems

State-of-the-art visualization software systems have powerful data management utilities

for scientists and technologists, but their user interfaces fall short of supporting artistic

workflows well. This is not a coincidence – writing a piece of software that is up to

“artist spec” is notoriously difficult [Buxton, 1997], and for many visualization system

developers, the artist spec is not a priority. We push back against this set of priorities
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because while the data processing utilities are a crucial part of the process, the end

result is a visual ization, meaning the process for visual design should be given careful

consideration in the structure of the software and its user interface. Giving this addi-

tional consideration becomes difficult because many modern visualization applications

(i.e. ParaView [Ahrens et al., 2005] and VisIt [Childs et al., 2012]) are constructed as

monolithic, self-contained applications. These applications do support nonlinear design

processes to a certain degree, but to fully support artistic processes in software, mod-

ifications to their user interfaces are required to make them more flexible. The code

for the user interfaces of these applications is technically modular and separable from

the data management code, but in practice the UI toolkits these applications are built

on are still too rigid to fully support creative methodologies. While there has been

prior work emphasizing the “visual” in visualization software by building custom code

for the visualizations and their design, these applications are limited in their generaliz-

ability between datasets. Some applications are built around a specific dataset (e.g. city

flows [Nagel and Pietsch, 2015]), and others are restricted to 2D data (e.g. Drawing

with the Flow [Schroeder et al., 2010] and Visualization-by-Sketching[Schroeder and

Keefe, 2016]).

The Artifact-Based Rendering (ABR) technique [Johnson et al., 2019b] uses more

generalizable approach than previous work by using an integrated data pipeline from

ParaView [Ahrens et al., 2005], a powerful, parallel-computing wrapper for the Visual-

ization Toolkit (VTK) [Schroeder et al., 2004]. ABR supports artists in the creation of

complex visualizations with 3D, multivariate, spatiotemporal data by allowing the use

of handcrafted artifacts as elements in a visualization. Stage 1 of the ABR technique

starts in an artist’s studio with clay, ink, paper, and other forms of traditional media.

During Stage 2 of the ABR technique, artists’ creations (sculpture, ink washes, chine

collé, etc.) are digitized using 2D and 3D scanning techniques, resulting in visualization

assets (VisAssets) that are usable by the ABR visualization engine. Lastly, these VisAs-

sets are used to encode variables a dataset, leading to visualizations with a decidedly

handcrafted aesthetic [Samsel et al., 2019a]. The ABR technique forms the basis for

the architecture presented in this chapter, but it should be noted that there are marked

differences between the “ABR Engine” mentioned in this chapter and the “ABR Tech-

nique” showcased in the 2019 IEEE VIS paper. The most notable difference is that

the visualization system used in the original paper still used a monolithic architecture;

both the graphics and user interface for creating visualizations were tightly coupled to

the data processing pipeline. As such, it still fell short of the “artist spec”; in practice

requiring a computer scientist to “Wizard-of-Oz” the visualization controls while the

artist made the design decisions.
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4.3 Design Requirements

In visualization system building research, it is common practice to start with the data

specification and move towards a final visualization. This approach elegantly succeeds

for data processing tasks like creating isosurfaces, sampling glyphs from volumetric data,

and seeding streamlines; however, it also leads to visualization architectures that are less

inclined towards artists’ creative methodologies. We take a different path. We bring

the visualization design goals of our artist stakeholders to the forefront of the software

development process, all the way from early mockups to the current implementation.

Working closely with artists throughout the entire development process of the archi-

tecture allows us as software developers to focus on making the software accessible to

humans while still retaining its entire technical capacity. In this section, we identify a

number of essential design requirements for a visualization software architecture outlined

by our artistic collaborators, the corresponding technical requirements this architecture

must support, and a means of encoding these technical requirements using metaphor.

4.3.1 Artistic Requirements

Rapid, nonlinear exploration of visual design space

Artists working in their studios employ a nonlinear process which involves repeatedly

making detailed changes in a piece of artwork and taking a step back to observe the work

as a whole. This type of process encourages a creative mindset where artists can lose

themselves in the work and instinctively rely on their training in visual principles. When

applied to data, the process results in unique visualizations that can help stakeholders

understand their data better [Johnson et al., 2019b] and are clearly influenced by each

artist’s individual style [Samsel et al., 2019a].

Traditional-media artifacts

A big contribution to the individual style of artist-designed visualizations is the use of

artifacts created with traditional, physical artistic media. Such artifacts include hand-

sculpted clay glyphs and colormaps based on other artwork (Figure 4.1 center top), as

well as hand-drawn lines and textures (Figure 4.10 B and C). Incorporation of these arti-

facts is essential to fostering the creative processes of artists working with data [Samsel

et al., 2019a], and the physical artifacts afford unique opportunities to leverage imagined

touch on the final visualization.
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Figure 4.2: In computer graphics visualization, every visualization layer (A) is composited
together into the final image (B). In intaglio printmaking, plates (C) are covered with
colored ink and run through a printing press (D) to obtain impressions, many of which
are combined into the final edition (E). Right images Copyright 2020 Walton Ford and
Wingate Studio; used with permission.

4.3.2 Technical Requirements

Flexible user interfaces

Requirements 4.3.1 both necessitate a visualization design interface that is suited to

creative processes. In the style of Creativity Support Tools [Shneiderman, 2000], this

means supporting artists in their exploration of the visual design space by enabling them

to make rapid changes to the visualization and receive immediate visual feedback.

Real-time visualization control

To achieve the prior requirements, the visualization software architecture must support:

A. Quickly swapping visual elements and data

B. Modifying visual elements based on data

C. Viewing the visualization from various angles
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Figure 4.3: The construction of a glyph data impression, showing (A) applying the
chlorophyll point sampling key data, (B) applying a glyph from the design palette, (C)
applying a colormap and Salinity variable, and (D) applying the Temperature variable
with the same colormap. Notice how the glyphs remain in the same location throughout
because they all use the same Points key data object.

4.3.3 Printmaking Metaphor

Effective visualization software for artistic stakeholders finds a balance to achieve all the

technical and artistic requirements, often through the use of metaphor; this is another

essential requirement for the architecture. Intaglio printmaking was the metaphor upon

which the architecture is built. Printmaking helps bridge the gap between the technical

requirements of artist stakeholders and their technical implementations because it bears

a resemblance to the way computer graphics are drawn and is a process that a majority of

artists are familiar with. Figure 4.2 shows a step-by-step comparison of the printmaking

process with the computer graphics rendering process.

4.4 Implementation

In this section, we present the design and implementation details of the new data vi-

sualization architecture that supports artist-focused visualization design interfaces. The

entire software design process surrounding the architecture is focused on providing artists

with a familiar means of creating a piece of visual art – in this case, a multivariate visual-

ization. Thus, developing a visualization design user interface that fits well with artists’

nonlinear creative processes was at the forefront of the team’s minds as we created the

architecture. To this end, we enumerated and deconstructed the elements of modern

visualization software and put them back together into a new architecture that better

supports artists’ creative practice.

4.4.1 Terminology

The architecture borrows terminology from both intaglio printmaking and traditional

data visualization. Terms from the ABR technique are also used, including VisAssets,
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Visual Parameters

Inputs

Figure 4.4: A Glyphs data impression (visualized in Figure 4.3D) with inputs populated
by an artist.
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the artist-created visual elements that can be used in a visualization (shown in Fig-

ure 4.1 center top). In printmaking, the plate with a registration (or the “structure”)

in printmaking is called a key plate, and each pass through the printing press is called

an impression. These artistic terms are adapted for use in the data visualization world,

hence we get plates, data impressions and key data. Key data are the geometric struc-

tures upon which we apply our designs to – Points, Lines, and Surfaces. One example

of such a structure is the Points key data object with a glyph sampling of chlorophyll in

the Gulf of Mexico shown in Figure 4.3, where glyphs are denser with higher chlorophyll

concentrations and sparser with lower concentrations. Plates specify the available inputs

on a particular type of data impression; this defines what type of key data they accept

and other inputs like Glyph Size (numeric), Color Variable (scalar variable), and Pattern

(VisAsset). Individual data impressions (“towers,” shown in Figure 4.4) are initialized

from plates, and are comprised of one or more key data objects along with all the visual

designs applied to them. For instance, we might take the approach shown in Figure 4.3

and first apply a hue-varying green colormap, then apply a handcrafted triangular glyph

to the chlorophyll point sampling.

The new metaphoric vocabulary is augmented with standard visualization vocabu-

lary like variable and dataset to create a unified terminology in the architecture. We

consider a dataset to be a collection of related key data objects, each containing vari-

ables. Variables may be present in more than one key data object. For instance, the

Temperature scalar variable may be present in both the chlorophyll point key data and

the ocean current streamlines key data, and the vector variable FlowDirection may be

present in both of these key data as well.

4.4.2 Architecture Overview

In software systems, modularity is generally considered “good design”, and has precedent

in many systems today [Schwanke, 1991]. To achieve modularity and maximize the

separation of the visual design tools from the data management and rendering utilities,

the team embraced a distributed architecture where each component can run on its

own computer, and they communicate across a network. Decoupling the visual design

tools from the data management utilities was the first step towards achieving a modular,

distributed architecture. The architecture is separated into four main components:

• A web-based design user interface

• A web server

• A rendering engine

• A data host
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Network

Graphics Host

Rendering Server

Visualization State

Figure 4.5: Data sources hosted on a supercomputer, data visualization graphics and a
web server hosted on a powerful graphics computer, and visualization design interface
clients all work together to allow artists to build visualizations of 3D multivariate data
which are rendered at real-time frame rates. Visualization state is shared between the
rendering engine, the server, and the design user interfaces.

Figure 4.5 depicts the components of this architecture and their relationships over

a network. An artist creates the visualization in a web browser using the design UI

(Figure 4.6), which is served from the web server on the graphics host computer. The

server acts as an intermediary between the design UI clients and the rendering engine. A

powerful graphics computer runs the rendering engine and displays the final visualization

at interactive frame rates. The computer on which the data resides is known as the

data host, which also supplies the data management utilities and sends preprocessed

geometric data to the rendering engine. For the purposes of concrete demonstration,

the examples shown in this chapter use a combination of the Artifact-Based Rendering

technique [Johnson et al., 2019b], ParaView [Ahrens et al., 2005], and a Python Django

server to implement the components of the architecture, but each of these components

may be swapped out at any time.

Rendering engine

The ABR engine is the rendering engine in this implementation of the architecture,

which uses the Unity game engine, C# scripts, and ShaderLab shaders to render the

artist-driven visualization graphics. The engine supports creative methodologies in vi-

sualization by allowing artists to use their own work, often created in physical media,

and is connected with a web-based visualization design user interface (Figure 4.6). The

rendering engine accepts commands in real-time from the visualization design interface,

supporting Requirement 4.3.2A. As artists construct a visualization using the interface,
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states can be saved to JSON files at the artist’s discretion so they can come back to

work on it later or share the state with others. If the rendering engine is running on

a computer with a head-mounted Virtual Reality display connected, the resulting visu-

alization can also be displayed in VR at interactive frame rates. The rendering engine

also supports Requirement 4.3.2C by supplying standard 3D navigation controls in the

visualization display window.

Data host

To obtain the data, the rendering engine connects through sockets to the data host. In

the data host, volumetric data are preprocessed into geometric forms (points, lines, and

surfaces), then further processed in the rendering engine to get the renderable meshes.

Glyphs are passed through an instance-rendering shader, lines are rendered as a quad

strip, and surfaces are rendered as a series of triangles.

Web server

On the user-facing side of the architecture is the web server which handles all connec-

tions and messaging with the design user interface. The server is run within the same file

system as the rendering engine so that data and artist-created VisAssets can be shared

between these components. For instance, the design UI fetches the colormap thumb-

nails directly from the server, and the rendering engine uses colormap files in the same

directory to apply to the visualization. The server also passes messages between the

design UI and the engine using WebSockets [Fette and Melnikov, 2011]. All messages

between the design UI and the ABR engine are in JSON format.

Visualization design interface

The visualization design interface is built for web browsers in order to support as many

devices as possible, and to take advantage of the breadth of modern web libraries avail-

able. Specifically, the interface uses jQuery UI for most of its primary interactions,

including dragging and dropping puzzle pieces. The interface also includes a colormap

editing utility (shown in Figure 4.8) that takes advantage of the D3 visualization li-

brary [Zhu, 2013] for showing the histogram of the variable attached to a particular

colormap. Because it is implemented as a web app, the design interface can be run on

a different computer from the visualization – even on a tablet across the country.
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Figure 4.6: The design user interface, showing the data palette (A), the composition
panel (B) with one data impression, and the design palette (C).

4.4.3 The Visualization Design Interface

Figure 4.6 shows the web-based 3-panel design interface that allows for rapid iteration on

the visualization contents. When considering artists’ need for fast, nonlinear iteration of

visual designs (Requirement 4.3.1), the fundamental processes used in the construction

of a visualization need to change from the traditional data-first approach. For instance,

an artist may consider both the Ribbons and Clay Forms in Figure 4.7 to be “lines,”

and features like seamlessly changing from ribbons to clay forms is something most

artists would expect from the software they work with. However, from a data-first

computer graphics standpoint, rendering a ribbon (quad strip) is significantly different

than rendering a series of instanced glyphs; in fact the easiest approach to make this

kind of change is usually to make a new glyph layer, copy all the visual encodings from

the old ribbon layer, and then discard it. The visualization design interface uses the

metaphor of a “data impression” to convey the technical constraints of the computer

graphics algorithms in a way that is consistent with artists’ studio processes.

Data Impressions

Data impressions are the means with which artists create visualizations in the design

interface. Each data impression is a single “layer” of the visualization, and artists build
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their visualization composition by creating many data impressions with different key

data. Data impressions are initialized by dragging and dropping a plate from the design

palette panel on the right into the composition panel in the center of the design user

interface (see Figure 4.6). Figure 4.4 depicts a single Glyphs data impression which uses

the chlorophyll point sampling from Figure 4.3 (D) and two artist-chosen VisAssets – a

colormap and a glyph.

Data impressions have one or more key data. In Figure 4.4, the Glyphs data impres-

sion has a Points key data object attached to it. Like every variable and VisAsset in

the interface, the key data puzzle pieces have evocative iconography showing an artist’s

interpretation of that type of key data. Key data are selected from the left data palette

panel and dragged into matching data impressions in the center composition panel of

the design interface (see Figure 4.6).

Additionally, data impressions each have a set of visual parameters that the artist

can change. Each parameter may have one or more inputs, for instance in Figure 4.4 the

Color parameter has two inputs: Colormap for the artist-created colormap VisAsset, and

Color Variable for the scalar data variable to be encoded with that colormap. Similar

to key data, scalar and vector variable puzzle pieces are dragged and dropped from the

left data palette, and VisAssets are dragged and dropped from the right visual design

palette into matching puzzle slots on a data impression in the center composition panel.

Two methods are used to indicate puzzle piece compatibility – the iconography of the

puzzle piece shape must match its input slot, and a subtle blue glow appears over each

compatible slot when dragging a puzzle piece.

Building Visualizations

Using the interface, artists create visualizations in a manner similar to the processes they

use in the studio. Data impressions provide a logical means of organizing components

of a visualization, and inputs to these data impressions allow for quick, iterative changes

to be made to a visualization at the drop of a puzzle piece (which addresses Require-

ment 4.3.2). We provide two concrete examples of working with the interface which

showcase possible ways an artist may desire to create a visual outcome. Both examples

use data from a Gulf of Mexico biogeochemistry dataset [Petersen et al., 2015], and

have Surface data impressions of the ocean floor and land for context. The generic

process for getting started with a first data impression in the design user interface is as

follows:

1. Initialize a data impression from a plate

2. Assign a key data object
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Figure 4.7: Two line impressions, one made with a ribbons plate and another made with
a glyphs plate.

3. Assign VisAsset and variable inputs

4. Iteratively adjust visual parameters

First, let us return to the previously mentioned situation where an artist wants to

change the type of line for the ocean current streamlines south of Louisiana shown

in Figure 4.7. Let’s say that an artist wants to begin with representing these currents

with Ribbons. A Ribbons data impression is instantiated, the proper key data are applied,

and the artist chooses VisAssets for the Line Texture and Color visual parameters. At

this point, the artist may decide that they want to use clay forms instead of ribbons to

visualize the ocean currents. Recall that the computer graphics algorithm for rendering

clay forms is entirely different from that of the ribbons. This constraint is directly

encoded within the design interface: the artist cannot drag the Points key data of the

line onto the Ribbons data impression – they must create a new Glyphs data impression

and copy across each data variable and visual element to the new impression.

The second example (Figure 4.3) shows a point sampling of chlorophyll density

near the western coast of Florida. A Glyphs data impression is instantiated, and the

chlorophyll point sampling key data object is applied to the impression. Next, a glyph

VisAsset is chosen from the design palette and applied to the Glyph input, a colormap

from the design palette is then applied to the Colormap input, and a scalar variable

Salinity is applied to the Color Variable input. Lastly, if the artist decides to visualize
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Figure 4.8: The colormap editor integrated with the visualization design user interface
allows for on-the-fly changes to the colormap based on a histogram of real data values.

Temperature instead of Salinity, they need only drag in the Temperature scalar variable

from the data palette to replace the Color Variable input.

Working with VisAssets

Artists to want to use their own work when creating visualizations, so any artist-focused

interface for visualization design must keep this in mind (Requirement 4.3.1). The

Artifact-Based Rendering technique allows artists to incorporate their own textures, col-

ormaps, lines, and glyphs which affords the resulting visualizations a much greater visual

vocabulary [Samsel et al., 2019a]. The design interface allows for two complementary

strategies for working with VisAssets: downloading them from a curated library [Samsel

et al., ], and working with local copies.

Handcrafted artifacts (glyphs, colormaps, lines, and textures) are curated by artists

in the Sculpting Vis Collective, and a series of ABR web applets [Johnson et al., 2019b]

are used to convert them into usable VisAssets. In order to take full advantage of

ABR, artists will often need to modify these VisAssets while designing a visualization.

The design user interface features a colormap editor (Figure 4.8) inspired by Color-

Moves [Samsel et al., 2018b] which allows the artist to create custom, dataset-specific

colormaps and view the resulting color changes on the data in real-time.
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Bathymetry

Color Variable: depthPattern

CDW

Color Variable: temp Glyph-0.37 2.18-39.32 4671.15

Figure 4.9: ABR visualization created by artist Francesca Samsel with a Glyphs data
impression showing Circumpolar Deep Water (CDW) and a Surfaces data impression
showing the Bathymetry below the Ronne-Filchner ice shelf, described by the JSON
state in Listing 4.1 at the end of the chapter.

4.4.4 Visualization Schema

We add an additional component to augment the architecture presented so far – a vi-

sualization state specification based on a JSON Schema [Pezoa et al., 2016]. Schemas

have a long-standing precedent for use in defining a visualization state; Snap-Together

Visualization [North and Shneiderman, 2000] uses a relational database schema and

Vega-Lite [Satyanarayan et al., 2016] uses a JSON schema to define interactive visual-

izations. The schema describes a formalization of an artist-created visualization state,

such as that shown in Figure 4.9 and Listing 4.1 at the end of the chapter. The following

describes the roles of this schema and their impact on the flexibility and stability of the

architecture.

Schema as a description of capabilities

The schema defines the plates that are available in the architecture. This allows devel-

opers to make algorithmic improvements to the rendering engine without affecting code

in the user interfaces or destroying backwards compatibility with visualization states.

The schema also provides definitions to every input so that the rendering algorithms can

be improved or swapped out with complete transparency to the artist.
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Schema as a contract

The schema also ensures that the visualization state representation is consistent across

the architecture. The visualization state schema has four main components: data im-

pressions, local VisAssets, scene information, and UI data. The most important part

of the visualization state, data impressions, is a list of artist-created layers. Each data

impression has a unique identifier, and its inputs are populated with the VisAsset identi-

fiers, data paths, or primitives that the user has dragged and dropped in the artist-facing

design interface. Other scene data such as lighting information is also initialized and

adjusted through the interface. In addition, the state also stores VisAssets the artist

has modified, as well as any UI-specific data that may need to be saved for a particular

interface, such as the location of the data impression towers in the composition panel.

4.5 Results

The architecture enables new remote multivariate 3D visualization collaboration in a

way that was not previously feasible. Another important result for the architecture was

the feedback and insights on the interface and visualization design provided by artists

who used the interface. In this section, we describe the remote design sessions that were

conducted with a variety of geographically distributed collaborators, as well as several

insights from the artist stakeholders who used the interface.

4.5.1 Design Sessions Enabled by the Architecture

The network-based implementation of the architecture allowed our team to conduct

design sessions with people across broad distances. During each design session, the

participants used the web-based visualization design interface to build visualizations of

curated datasets such as biogeochemistry in the Gulf of Mexico [Wolfram et al., 2015]

and ocean currents under the Ronne-Filchner ice shelf of the Antarctic [Petersen et al.,

2019]. As necessitated by the COVID-19 pandemic, all design sessions were run entirely

remotely via the networking and web capabilities of the architecture in conjunction with

video conferencing software.

In the architecture’s infancy, we facilitated two remote design sessions with artists.

Both artists watched a short training video on the use of the interface prior to their

sessions, and could ask as many questions as they wanted while creating a visualization.

The first session was conducted with artist Deborra Stewart-Pettengill, who works with

many forms of traditional artistic media and had no prior experience working with 3D

scientific data. Stewart-Pettengill has lately been working with chine collé, a printmaking

technique that involves thin pieces of colorful paper which are cut out and applied to
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Figure 4.10: Francesca Samsel uses custom colormaps and her own hand-sculpted clay
glyphs in this visualization of ocean currents mixing under the Ronne-Filchner ice shelf in
Antarctica (A). Deborra Stewart-Pettengill commonly works with patterns, which have
been digitized to form streamlines (B) in the Gulf of Mexico visualization and a texture
on the land (C).

the print when it is run through the press. The interaction with the visualization design

interface allowed Stewart-Pettengill to use her chine collé work in a visualization of

biogeochemistry data in the Gulf of Mexico (see Figure 4.10 B and C). During the

session, Stewart-Pettengill iterated through a total of 12 glyphs, 7 lines, 8 textures,

and 26 colormaps from the Sculpting Vis library. Three of the lines were processed

into VisAssets from Stewart-Pettengill’s chine-collé work, which took an ABR expert

approximately thirty minutes total to accomplish before the session started. Additionally,

all 8 textures were sourced directly from the chine-collé work, which took an ABR expert

about 10 minutes total to convert into VisAssets. Session one took approximately an

hour and a half total.

A second design session was held with artist Stephanie Zeller, who has worked with

3D scientific visualizations previously including custom colormap creation. Through the

use of the Sculpting Vis web applets [Samsel et al., ] and the colormap editor in the

design user interface, Zeller created several new colormaps as well as making dataset-

specific modifications to colormaps from the Sculpting Vis library to benefit the clarity

of the variable they are applied to. During the session, Zeller used 14 glyphs, 9 lines, and

9 textures, and 56 colormaps. She edited 18 of these colormaps during the session using

the colormap editor, and she created two colormaps from scratch using the Sculpting

Vis web applets [Samsel et al., ]. See Figure 4.1 (left and center) for a view of Zeller’s

visualization, featuring her custom colormaps in combination with other VisAssets from

the Sculpting Vis library. Session two was conducted in two parts, the first about one

hour long and the second nearly two hours.

A few weeks later after several improvements were made to the architecture and user

interface based on feedback from the earlier artist sessions, another design session was

conducted with 7 members of the Sculpting Vis Collective. This session was focused on
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the remote collaboration possibilities enabled by Johnson’s approach to remote graphics

rendering [Johnson, 2020]. Each member of the design session viewed the visualization

remotely through a VR headset or a desktop viewer if they didn’t have access to a head-

mounted display. During the session, the team was able to produce insights about the

3D multivariate data we were working with while one of the artists on our team worked

rapidly on the visualization using the design interface.

At the IEEE VIS conference in October 2020, the Sculpting Vis Collective hosted

a virtual tutorial on Artifact-Based Rendering which used the architecture to facilitate

collaborative remote visualization design [Keefe et al., 2020]. During the tutorial, par-

ticipants had the opportunity to learn about the philosophy of our team, how to use

the software, and design recommendations for creating hand-crafted visualizations. Par-

ticipants were then encouraged to practice with the visualization design user interface

with the assistance of Sculpting Vis team members. Several example visualizations were

given with the data the participants were to use, including the Antarctic visualization

shown in Figure 4.10A. After this, participants were grouped with members of our team

via video conference breakout rooms to expedite answers to questions. Nodes on a

supercomputer were used to run 8 instances of the architecture for the tutorial. Each

instance contained a data host, a rendering engine, and a web server for the design user

interface. Tutorial participants connected to the design UI through web browsers on

their personal computers and designed visualizations together with each other and the

Sculpting Vis team via video conferencing software. The tutorial had approximately 40

participants total, about 10 of whom remained for the interactive portion to use the

design interface.

4.5.2 Design User Interface Insights

From the beginning of the software design and development process, we worked with

artists in our interdisciplinary Sculpting Vis Collective to determine requirements for

the architecture and interface as well as enhance their functionality and form. During

the formulation of the interface, the Sculpting Vis Collective held semiweekly design

meetings that focused around next steps for developing the interface’s capabilities as

well as higher level discussions about the implications the interface and architecture

will have on the visualization field. At each meeting, artists on the team discussed

what was working well with the interface and what needed to change to better serve

their creative processes. Even early in its evolution, the artists were excited about the

possibilities that the interface allows for them while creating visualizations, including

the rapid iteration through the visual possibility space and the scope and fidelity of

visual vocabulary granted by the artists’ use of their own media in the visualizations
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(Requirements 4.3.1).

The team received further valuable insights during the artist sessions which had a

significant influence on the look, feel, and capabilities of the user interface and architec-

ture. One noteworthy item during these sessions was the artists’ enthusiasm for using

their own work in the visualizations; this reinforced Requirement 4.3.1 as an essential

item for the architecture to support. When Stewart-Pettengill first saw her 8 chine-collé

textures in her palette of the design user interface, she immediately recognized them:

“Oh yeah, there are my strokes! Cool!” She went on to apply several of these tex-

tures to the lines depicting ocean currents as well as the surface depicting the landmass

surrounding the Gulf of Mexico (see Figure 4.10 B and C). Zeller also experienced a

similar excitement for using her own colormaps, applying these custom colormaps to

nearly every variable in her visualization. Another piece of insight was observing how

the artists worked with the interface; the importance of Requirement 4.3.1, supporting

an iterative design process, was affirmed by the artists. Both artists approached the

visualization design using a nonlinear process – each design decision came as a reply to

the current state of the visualization. Zeller found this process similar to that which she

uses in her large-format paintings; she works on minute details up close and repeatedly

steps back to look at the “big picture” to make sure everything is visually balanced.

Stewart-Pettengill also remarked that she is “just so used to experimenting with things”

as she works, and that the interface enabled a similar experimentation process during

her session.

4.5.3 Additional Results

Beyond the success of the above design sessions, we have observed other noteworthy

results from our experience with the artist-focused design user interface and architecture.

Firstly, the software holds up to usage not only as a design tool but a means to

interactively visualize data the way scientific sensemaking processes necessitate. The

software has been used in two iterations of the Visualization course at the University of

Minnesota. Students begin the course by handcrafting visual encodings from physical

materials; the first project involves designing 20+ gradients that could convey different

types of data (linear, divergent, discrete, continuous). Then, students used the design

interface and architecture to create visualizations with real, multivariate 3D spatial

data – for example, a time-varying dataset on the wildfire phenomenon “vorticity-driven

lateral spread”, from the 2022 SciVis contest at IEEE VIS2. After successfully designing a

multivariate visualization using visual encodings they handcrafted, the students created

several different interactive, queryable visualizations using their visual encodings as well,

2SciVis 2022 Contest: https://www.lanl.gov/projects/sciviscontest2022/

55

https://www.lanl.gov/projects/sciviscontest2022/


and many opted to use our software for their final project. While the final visualizations

were not as diverse and meaningful as we had initially hoped, but we attribute this more

to the fact that the majority of the classes were undergraduate computer scientists who

lack significant experience in utilizing color, line, texture, and form to design effective

visualizations, rather than software limitations; the students who truly engaged with the

software and principles behind the inverse physical rendering process were able to create

truly unique visualizations.

So far in the lifetime of the Artifact-Based Rendering technique and this architec-

ture, we’ve also observed some unique behaviors from visualization viewers that indicate

there’s something special to the approach of creating visualizations with handcrafted

elements from the physical world. From the original ABR paper [Johnson et al., 2019b],

we observed a climate scientist looking at his biogeochemistry data and referring to the

glyphs representing chlorophyll and nitrates:

They look like biology more than they look like plastic. They could be real,

produced by nature. I think that people are going to underestimate that.

At first, I’m perturbed, these don’t look like plastic, then I realize this is not

a problem but a major benefit.

During many demos in our lab, people have reached out with their hands to try

and touch parts of a VR visualization created by one of our collaborating artists with

physical elements from her studio and this software, and have commented on how certain

parts of the visualization look like “Cheerios” or like “popcorn”. We hypothesize that

individuals viewing a visualization created with our inverse physical rendering process are

able to leverage imagined touch on the visualization because its elements originate in the

physical world. That is, people are able to better relate to these handcrafted, physical-

looking elements than geometrically defined, sterile primitives provided by most other

current visualization software because they are initially created from physical materials,

and engage the same “need for touch” that physical objects provide [Peck and Childers,

2003].

4.6 Discussion

4.6.1 Implications for Collaborative Scientific Visualization

Our distributed architecture provides the modular separation necessary to promote the

use of artistic processes while working with big data, and allows for the flexibility to

host different components on geographically distributed computers. This flexibility is
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evidenced both by the diversity of use cases that our team has already explored using

this architecture.

In total, we held four major visualization design sessions with the architecture since

its inception, all of which took place during the COVID-19 pandemic. While remote

collaboration wasn’t an initial requirement of the architecture’s software design, it quickly

became necessary to the ongoing progress of the project. Losev et al. describe a remote

collaboration strategy “simulating a co-located design space” in which team members

each have two webcams - one which to show the member’s face and one to use showing

sketches [Losev et al., 2020]. Our architecture employs a similar strategy, except instead

of using a second webcam, the “sketching” and ideation on a visualization is done directly

in the web-based design user interface. This is the strategy which was used during all of

our design sessions thus far, and it demonstrated its effectiveness for generating unique

and rich visualizations like those shown in Figure 4.1 and Figure 4.10. We anticipate that

in the future, this type of remote collaboration will be incredibly useful for geographically

distributed teams like the Sculpting Vis Collective.

Achieving accessibility to visualization design software at varying levels of graphics

hardware is another benefit to the modular architecture. Since many actively-studied

datasets are very large, it is not feasible to move them between computers; this has

already been addressed with systems like ParaView [Ahrens et al., 2005] which allow the

user to connect to another instance of ParaView running on a different computer. Our

architecture provides this, in addition to two further degrees of accessibility – remote

design and remote rendering of visualizations. Visualizations can be designed remotely

via the artist-focused design interface, which only requires a device with a web browser

and a network connection. Remote rendering allows the user to view their visualization

designs without having a significant rendering capacity on their devices [Johnson, 2020].

These two techniques are steps towards lowering the barriers for artists working with

data; the hardware requirements for designing a visualization are significantly reduced

when using this architecture as long as there is a data host and rendering engine available

via a network.

4.6.2 Implications for Artistic Expression

The speed at which one can explore visual alternatives with the design interface stim-

ulates the artistic imagination of those who use it. All the artists who have used the

interface so far have remarked that it was a fun experience for them. They also men-

tioned that working with the interface was very similar to their studio processes; it allows

for rapid experimentation of visual alternatives as well as “taking a step back” to see the

bigger picture of the visualization, which are all core principles in creative methodologies.
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The interface’s proclivity towards visual exploration was also evidenced by the number

of VisAssets used by each artist during their design sessions. The interface removes the

barriers to achieving this creative state so that artists can use their skills built up over

a lifetime of experience to add their voices and visions to the multidisciplinary efforts to

wrangle increasingly large and complex scientific data.

The visual variation exhibited by artists using the design interface in the new archi-

tecture was significant because its workflow enables each individual to contribute their

artistic vision to the visualization design. Past work with the Sculpting Vis Collective

(e.g. [Samsel et al., 2019a, Johnson et al., 2019b, Samsel et al., 2018a]) and experiences

with the design interface so far indicate that a crucial part of artists interacting with

data is using their own handcrafted elements in their visualizations. The architecture

supports this aspect of artistic engagement in visualization, as evidenced by artists’ use

of their own chine-collé work, custom colormaps, and hand-sculpted clay glyphs.

4.7 Conclusion

This chapter introduced an “inverse” physical rendering process through which is now

possible for artists to handcraft elements in the physical world and link them with

complex, multivariate 3D spatial data, and finally view the visualizations in extended

reality. The inverse physical rendering process has the potential to enable scientists

to encode more variables more effectively in their visualizations to better comprehend

their data. Throughout the creation of this architecture to support artists building

3D multivariate data visualizations, we have decoupled the components of current vi-

sualization software, developed user interfaces to support creative processes, connected

these interfaces together with visualization rendering engines, and built a formalization

of an artist-created visualization state as a JSON schema. The architecture introduces

a distributed approach to visualization design software, ensuring that the specification

for the rendering system is separate from the design requirements of any artist-facing

user interface. Similar to previous work in artist-focused systems for visualization design,

the emphasis of our work is on flexibility, both in a user interface that supports rapid

iteration and in a modular architecture that allows easy modification of its software

components. The Sculpting Vis Collective continues to work towards our common goal

of providing artists in visualization with the best possible experience for the benefit of

science and humanity at large, and the distributed architecture this chapter presents is

a significant step forward for artists designing 3D multivariate visualizations.
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{ " impressions ": [ {

"uuid ": "12598986 -819 c",

" plateType ": " Surfaces ",

"name ": " Bathymetry ",

" inputValues ": {

"Key Data ": {

" inputType ": " PointsKeyData ",

" parameterName ": "Key Data",

" inputGenre ": " KeyData ",

" inputValue ": "/ Ronne /key -data/ bathymetry " },

" Color Variable ": {

" inputType ": " ScalarVariable ",

" parameterName ": " Color ",

" inputGenre ": " Variable ",

" inputValue ": "/ Ronne /scalar -vars/ depth " },

" Colormap ": {

" inputType ": " ColormapVisAsset ",

" parameterName ": " Color ",

" inputGenre ": " VisAsset ",

" inputValue ": "f31cfdb3 -0 f2f" },

" Pattern ": {

" inputType ": " PatternVisAsset ",

" parameterName ": " Pattern ",

" inputGenre ": " VisAsset ",

" inputValue ": "285 a2582 -48 f6" } }

}, {

"uuid ": "99 e2b165 -2e12 ,

" plateType ": " Glyphs ",

" label ": "CDW",

" inputValues ": {

"Key Data ": {

" inputType ": " PointsKeyData ",

" parameterName ": "Key Data",

" inputGenre ": " KeyData ",

" inputValue ": "/ Ronne /key -data/cdw" },

" Color Variable ": {

" inputType ": " ScalarVariable ",

" parameterName ": " Color ",

" inputGenre ": " Variable ",

" inputValue ": "/ Ronne /scalar -vars/temp" },

" Colormap ": {

" inputType ": " ColormapVisAsset ",

" parameterName ": " Color ",

" inputGenre ": " VisAsset ",

" inputValue ": "f52dabab -5 b11" },

" Glyph ": {

" inputType ": " GlyphVisAsset ",

" parameterName ": " Glyph ",

" inputGenre ": " VisAsset ",

" inputValue ": "1 af03108 -f1ed" } } } ] }

Listing 4.1: Data impressions of visualization state depicted by Figure 4.9. UUIDs have
been shortened to fit on the page.
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Figure 5.1: Adding direct multi-touch input sensing to a 3D physical printout and
combining this with a perspective-tracked, stereoscopic AR display creates a hybrid
visualization system that benefits from both the high-resolution, passive haptic feedback
of the physical data printout and the interactive data exploration made possible by digital
displays. Here, multi-touch queries create streamlines and cutting planes to explore a
supercomputer simulation of ocean currents and ice melting under Antarctica’s Filchner-
Ronne ice shelf.

5.1 Introduction

1So far in this dissertation, we’ve established the utility of using physical rendering pro-

cesses to encode data to enable better comprehension of and engagement with spatial

data. The data physicalizations in Chapter 3 used a physical rendering process to trans-

late digital data into physical data objects, while Chapter 4 introduced an “inverse”

approach to the physical rendering process in which handcrafted, physical media cre-

ated by artists are translated into elements of a digital extended reality visualization.

We identify three key observations from these chapters that motivate further work in

extended reality visualization and data physicalization.

Firstly, though the term “data physicalization” is relatively new, material properties

such as size, form, and surface texture have been used throughout history for commu-

nication and education, including in the current digital age [Jansen et al., 2015]. Most

modern data physicalizations leverage our natural predisposition for tactile data explo-

ration like touching, holding, and rotating 3D data representations. The physical nature

of the object can also enable better comprehension of the data by affording direct-touch

interactions like marking points with a finger to compare values and judging distances

based on a physical reference frame [Jansen et al., 2013]. So, based on the historic

precedent for physical data representations and the contemporary evaluations that back

up this precedent, we observe that data physicalizations are worth considering during a

visualization design process.

1 This chapter is based on work published at the 2021 ACM ISS conference under the same name.
This work was accomplished in collaboration with Maxwell Omdal, Seth Johnson, Stephanie Zeller, Clara
A. Richter, Francesca Samsel, Greg Abram, and Daniel F. Keefe [Herman et al., 2021].
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Secondly, we observe that many extended reality technologies exist that attempt to

replicate the embodied interactions we experience with physical objects in the real world;

for example head-tracked, stereoscopic VR coupled with a glove robotic input/output

device to provide touch feedback at the fingertips [Fang et al., 2015], or a VR display

coupled with force feedback on the tip of a stylus [Jackson et al., 2012a]. Yet, for all

the excitement and novelty currently surrounding digital extended reality technologies,

they are still incapable of effectively reproducing the haptic benefits of running mul-

tiple fingers over the surface of a data physicalization such as using a finger to mark

a point while comparing other areas of interest, or to follow a path on the physical

surface [Jansen et al., 2013]. Thus, we observe that data physicalizations fill a gap in

current visualization technologies that cannot yet fully engage the sense of touch.

Lastly, despite numerous successful examples of data physicalization, we observe

what may be a fundamental limitation with respect to the requirements of scientific

visualizations. Recall from Chapter 1 that scientists using these visualizations frequently

need to make queries into the 3D multivariate spatial data in near real-time, and the

visualization must provide rapid feedback which the scientist can use to explore, to test

theories, and ultimately better comprehend their data. While recent physicalization

work clearly demonstrates the ability to convey data from a variety of sources including

melting glaciers [Segal, 2015], the predicted impact of future climate scenarios on native

bird populations [Keefe et al., 2022a], global terrorism statistics [Madsen, 2018], and

biological interactions of marine ecosystems [Miebach, 2008], none of these examples

involve interactive data exploration. This raises the concern: Does the typically static,

pre-fabricated property of physicalizations preclude their use for interactive tasks such

as data querying, filtering, and calling up details-on-demand?

Researchers have explored two main approaches to overcome this seemingly inherent

limitation. The first is mechanical: including a system of sensors to detect touch and

linear actuators to physically move the 3D “pixels” of a display surface up and down

in real-time [Leithinger et al., 2011]. These impressive actuated displays may indeed

represent the future of physicalization work but presently remain costly and challenging

to construct and transport. The second main approach is to create a hybrid display,

combining physical elements with virtual elements to provide both interactivity and dy-

namic content (e.g., projection [Tateosian et al., 2010]). For this chapter, we define the

scope of hybrid visualization [Jansen et al., 2013] (also known as augmented physical-

ization [Djavaherpour et al., 2021]) to include any visualization that contains physical

components but adds interactivity using digital input and output mechanisms.

Building on this work, in this chapter we introduce a novel style of hybrid virtual

+ physical visualization designed specifically to support interactive data exploration
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tasks. We target the use case of multivariate, time-varying spatial data because this is

a long-standing challenge for exploratory visualization research. This is one area where

physicalizations have yet to be widely adopted, but have the strong potential to be

beneficial because they make it possible to perceive data via multiple sensory channels

simultaneously [Djavaherpour et al., 2021].

Our high-level goal is to combine the complementary strengths of digital visual-

ization and physicalization while overcoming the individual limitations of each. Since

physicalizations are meant to be touched with the fingers, we aim to support a level

of interactivity that is similar to a digital multi-touch screen. Our first technical re-

quirement is, therefore, to sense and respond to simultaneous touch input with multiple

fingers placed directly on the surface of the physicalization. Further, the accuracy and

responsiveness of this sensing should be similar to that of now-ubiquitous, multi-touch

displays. However, unlike those displays, this input device should provide an added ben-

efit of passive haptic feedback during interaction. Our second technical requirement is

to robustly modify the visual display in response to the user input. Since we aim to

support users analyzing complex spatial relationships in their data, meeting this require-

ment necessitates high-accuracy and low-latency alignment between the physicalization

and the virtual data display so that users can make spatial judgements between the

two (e.g., relating a flow feature displayed virtually to ridges in the bathymetry data

displayed physically).

This research is significant because whether on planar surfaces, in immersive envi-

ronments, or even hybrid virtual + physical systems, interactive techniques are essential

to supporting exploratory visualization tasks, and so far these have been missing from

data physicalizations. For 3D and 4D data, such traditional interactive techniques in-

clude user interfaces for 3D cutting planes, particle emitters, streamline seeding widgets,

and multi-scale views [Nielson et al., 1997]. While implementations of these techniques

exist for planar-display desktop setups (e.g., [Ahrens et al., 2005, Childs et al., 2012]),

projection-based hybrid virtual + physical visualizations (e.g., [Piper et al., 2002, Alonso

et al., 2018, Woods et al., 2016]) and immersive environments, including via multi-touch

input (e.g. [Bryson, 1996, Coffey et al., 2011b, LaViola and Zeleznik, 1999]), our solu-

tion is the first to enable these interactive data exploration techniques in an immersive

hybrid virtual + physical visualization.

Thus, this chapter contributes a novel approach to virtual + physical, hybrid, in-

teractive visualization based on combining perspective-tracked stereoscopic Augmented

Reality (i.e., immersive AR) with a creative approach to sensing touch through 3D

printed data physicalizations. This work represents the first example of such a hybrid vi-

sualization that supports exploratory visualization tasks using classic interactive widgets
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for spatial visualization, such as particle emitters, streamline seeding widgets, and multi-

scale views. The specific design developed (e.g., the custom tracking base) is justified

via a combination of discussions of related work and results from formative experiments

in the lab. The results are applied to create an exploratory visualization of Antarctic ice

melt simulations actively studied by climate science collaborators (see Figure 5.1) who

provide early feedback on the utility of the tool. This evaluation is complemented by a

lab user study to characterize the lower-level accuracy of the physicalization touch input

pipeline.

5.2 Related Work

In addition to the related work on data physicalizations and Tangible and Embodied

Interactions discussed in Chapter 2, we discuss three further areas that contribute to

our work in hybrid virtual + physical visualization systems.

5.2.1 Representing Data in the Physical World

Several advantages of data physicalization as compared to digital visualization have

been demonstrated in the literature, including more efficient comprehension of data

values when compared to 2D and 3D stereoscopic virtual displays of information [Jansen

et al., 2013] and preference for working with physical visualizations over immersive VR

visualizations [Danyluk et al., 2020]. Many physicalizations are also works of art; though

their primary goal is often to engage and inspire, these artworks can also improve data

understanding relative to more traditional visualizations [Djavaherpour et al., 2021].

Examples of physicalizations that are both artistic and improve data understanding

range from 3D printing of volumetric datasets [Bader et al., 2018] to massive tripod

data sculptures depicting climate change effects on native bird populations [Keefe et al.,

2022a]. Researchers and artists believe that these may provide audiences with increased

data engagement, with the added potential of emotional connection that may be an

even more valuable outcome than traditional metrics of speed and accuracy in data

comprehension [Wang et al., 2019].

Other data physicalizations exist solely for the pragmatic purposes of data analysis

and interpretation. Such physicalizations have been applied to biological and medical

data. Examples of this approach include the physicalization of molecular models [Carroll

and Blauch, 2017] and the 3D printing of multi-color surfaces for analyzing the mul-

tivariate properties of pain phenotypes [Thrun et al., 2016]. Geospatial data are also

commonly encoded with physicalization, with works ranging from tactile maps [Rase,

2011] to strategies for 3D printing an approximation of the Earth by dividing it into
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interchangeable, hierarchical cells [Djavaherpour et al., 2021]. While there are some

indications that physicalizations are helpful for these pragmatic, exploratory visualiza-

tions (e.g., [Jansen et al., 2013, Danyluk et al., 2020]), there is also evidence to the

contrary (e.g., [Berard and Louis, 2017]). In fact, Weiß et al. argue that there may be

no significant difference in user engagement between web-based, VR, and hybrid phys-

ical visualizations for certain tasks [Weiß et al., 2020]. Although additional research is

needed to continue to clarify the possible benefits, risks, and tradeoffs with data physi-

calization, it is quite clear that physicalization is not the right fit for every data analysis

task; this further motivates our desire to explore the potential of hybrid visualization

systems.

5.2.2 Exploring Data in the Virtual World

There is a rich history of research on interactive techniques for exploring spatial data us-

ing spatial and surface-based displays. Immersive data querying interfaces include flow

visualization widgets, such as direct-manipulation 3D placement of particle emitters

and streamline rakes [Bryson, 1996, LaViola and Zeleznik, 1999], interactive world-in-

miniature widgets for improved navigation and manipulation [Acevedo et al., 2001, Cof-

fey et al., 2011a], bimanual and multi-touch interfaces for slicing plane manipula-

tion [Coffey et al., 2012, Schulze-Döbold et al., 2001], freehand and haptic-aided 3D

sketching for data selection [Sobel et al., 2004, Keefe et al., 2008b, Jackson et al.,

2012a], multi-touch convex hull selection on slicing planes [Coffey et al., 2011a], mid-air

volumetric selection of sub-volumes of interest [Johnson et al., 2019a], and many more.

Many of these techniques translate directly from VR environments to AR, and both

styles of immersive visualization have a history of successful application to geographic

or topographic data (e.g., [Hedley et al., 2002, Bobrich and Otto, 2002]), as in our

application, which combines flow and terrain data. Our approach therefore adopts many

of the lessons learned from prior work, such as the importance of situating data queries

relative to features in the spatial terrain and supporting the most common immersive

flow visualization widgets. Of course, even the best of these purely virtual immersive

environments lacks the real-world tangibility provided by data physicalizations [Jansen

et al., 2015].

5.2.3 Early Tangible Interactions with Visualizations

Many visualization systems have built upon early research in Tangible User Interfaces

(TUIs) (e.g., [Ishii and Ullmer, 1997]) to make the data interactions described in the

previous section even more natural or intuitive [Shaer and Hornecker, 2010]. Our work

shares a clear motivation with TUIs to bridge the gap between digital and physical
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elements. However, the “tangibles” in TUIs are typically different from the data physi-

calizations studied in this chapter. Most TUIs use comparatively simple tangible objects

that act as proxies (e.g., pucks, tiles, bricks, pointers, or a doll’s head). These have

regularly been used to represent or select data; for example, using physical pointers to

select virtual points on a map with an immersive AR overlay [Bobrich and Otto, 2002],

exploring neural fiber data using a rolled-up piece of paper and stereoscopic panel dis-

play [Jackson et al., 2013], and performing query tasks in AR on 3D scatter plots with

direct manipulation of physical props [Bach et al., 2018]. However, with a few noted

exceptions (e.g. [Taher et al., 2015, Follmer et al., 2013]), users are not intended to

perceive more than the position or orientation of the data by touching or viewing the tan-

gibles. With data physicalizations, the role of the physical component shifts significantly

to prioritize reading data, often using both the haptic and visual senses.

TUIs often integrate well with AR and VR displays [Billinghurst et al., 2008], and

the technologies used to sense how the tangibles are touched and manipulated are also

relevant to our work. For detecting touch with TUIs, there are two primary options:

optical and direct. The optical approach, using cameras to detect touch contacts on

the surface of a tangible, suffers from a well-known limitation that the precise moment

of contact is difficult to detect [Wilson, 2010]. The precision of data exploration that is

possible via this strategy is therefore limited, which is problematic when working with

complex physical surfaces like geographic and bathymetric data. More direct touch

sensing technologies (e.g., capacitive [Savage et al., 2012] and pneumatic [Tejada et al.,

2020]) are therefore preferred from a standpoint of accuracy, but these more accurate

sensing technologies are often difficult to integrate with digital fabrication techniques.

For example, although flexible multi-touch sensors can be rolled to fit onto the surface

of cylindrical tangible prop [Song et al., 2011], they cannot currently be stretched to

fit over a more complex surface, even a sphere. We seek a solution that is direct-touch

and high-accuracy but still integrates well with digital fabrication techniques.

5.2.4 Hybrid Virtual + Physical Systems

Moving beyond simpler tangibles to physical models that users touch and observe to

read data values, the work that most closely relates to our own is in augmenting phys-

icalizations with electromechanical or virtual components, an active topic of research

also known as hybrid virtual + physical visualization. There are four categories of

augmented physicalizations: surface augmentation, active physicalization, six-degree-

of-freedom (6DoF) augmentation with a 2D display and 6DoF augmentation with an

immersive 3D display [Djavaherpour et al., 2021].

In the first category, prior work using surface augmentation includes combining phys-
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ical landscapes with GIS software [Tateosian et al., 2010], a table-scale physicaliza-

tion paired with a digital energy data visualization [Kirshenbaum et al., 2020], and

area-preserving displays for geovisualization [Dadkhahfard et al., 2018]. These surface-

augmented physicalizations are often accomplished via projection (e.g. [Tang et al.,

, Tateosian et al., 2010]), though other technologies have been utilized (e.g., embedded

LEDs [Taher et al., 2015]). Real-time registration between virtual and physical spaces

is not usually required; often a single calibration is sufficient each time the system is as-

sembled [Tateosian et al., 2010]. However, projection-based augmented physicalizations

sometimes require projection mapping to ensure that no distortion occurs on the digital

image – it has been reported as necessary in physicalizations over 6cm in height [Djava-

herpour et al., 2021]. Surface augmentation is not ideal for our applications since we

require understanding volumetric data, such as ocean currents at multiple depths.

Systems in the second category, active physicalizations, tend to require specialized

hardware, and are usually limited to 2.5D applications where the mechanical elements

are low resolution and move along a single axis. For example, Tangible CityScape [Tang

et al., ] allows users to visualize multiple variables in the context of an urban environ-

ment physicalized with actuated columns, while EMERGE [Taher et al., 2015] enables

visualization tasks like annotation, filtering, and navigation on 3D bar charts with ac-

tuated columns and color-changing LEDs. This approach is powerful and will perhaps

one day evolve to create an ultimate display for surface-based 3D data. However, the

current technology is limited in its ability to represent fine detail and in the prohibitive

complexity and cost required to implement such displays. These factors along with a

desire to complement physicalized data with spatially registered mid-air data steer us

toward a hybrid solution using some form of AR.

In the third category, mobile phones, tablets, and desktop systems have been used to

create a graphics viewed on the device’s screen that overlay virtual content with a view of

the physicalization captured by the device’s camera. Examples include the tablet-based

PLANWELL [Nittala et al., 2015] and desktop-based AR systems for analyzing structural

molecular biology [Gillet et al., 2004, Gillet et al., 2005]. Unlike projection-augmented

physicalizations, but similar to our work, these planar-display hybrid visualizations require

real-time registration between virtual and physical spaces to allow a user to manipulate

both the 3D viewpoint and the physicalization itself. In these situations, inside-out

image-based tracking is often used (e.g. [Nittala et al., 2015, Gillet et al., 2005]), though

other approaches exist (e.g. optical outside-in tracking [Pustka et al., 2012, Berard and

Louis, 2017]). Techniques in this category can take advantage of the robust multi-touch

input provided by the mobile device to support a variety of data interactions; however,

they are performed on the mobile device’s screen not on the physicalization itself, so the
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Figure 5.2: (I) An augmented reality visualization (A) is superimposed on top of a hexag-
onally segmented data physicalization (B). Force from a user’s touches is transferred
through the hexagonal columns to the force-sensing surface (C). The virtual visual-
ization is spatially co-located with the physicalization using an image-based tracking
system that determines 3D positions and rotations of image targets (D). (II) An exam-
ple hybrid visualization containing a hexagonally segmented physicalization of a pipe and
immersive augmented reality content showing user-chosen streamlines seeded based on
a generated velocity field and a cutting plane selected with multi-touch querying. (III)
The side angles of the truncated pyramidal base are angled at 40° to optimize tracking
accuracy when viewing the physicalization from the side-on details view (D) and the
top-down overview (O). Adapted from [Abawi et al., 2004].

potential passive haptic benefits of data physicalization are lost.

The fourth category of augmented physicalizations pairs 6DoF-tracked physical con-

tent with immersive, head-tracked stereoscopic AR virtual content. Prior work includes

Augmented Maps [Bobrich and Otto, 2002] and a hybrid visualization of flood dynamics

using 3D-printed topography [Zhang et al., 2020]. Systems in this style require robust,

high-accuracy and low-latency 6DoF tracking for both the physicalization and the im-

mersive AR device so that the virtual visualization remains spatially registered to the

physical reference frame. We take this as a key requirement for our work and build upon

the prior uses of image-based tracking methods (e.g., [Bach et al., 2018]). Although

some prior work exists in this category, none meets our goal and requirement of sup-

porting interaction through direct touch on the physicalization at a level similar to what

can be provided by a typical multi-touch display.
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5.3 Hardware and Strategies for Addressing Technical Chal-

lenges

Figure 5.2 presents an overview of our technical approach. By placing the physicalization

on a custom base, we minimize tracking latency and maximize accuracy. By dividing the

physical print into a regular grid of pieces that can move independently in the vertical

direction, a pressure-sensing pad placed under the physicalization is able to sense touch

events through the physicalization.

5.3.1 Continuous Real-Time Registration of Virtual and Physical Dis-

plays

Our strategy for consistently registering the position and rotation of the data physical-

ization relative to the user’s eye uses a passive inside-out optical image tracking system.

Although this is the best match with the Magic Leap AR hardware we used, other 6

DoF tracking solutions were considered, including electromagnetic, passive outside-in,

and inside-out 3D model (as opposed to image) tracking. Passive inside-out tracking

based on planar image targets is the most portable, only requiring a single camera for

capturing the scene and images affixed to each object to be tracked. Its sole require-

ment is a target image placed near the physicalization such that it is in the line of

sight of the camera simultaneously with the physicalization, as in the image target in

Figure 5.2(I-D). Coverage and portability of inside-out image-based optical tracking also

surpasses that of its outside-in counterparts because it is not bounded by a “tracking

volume” – the space where all external cameras have a line of sight – and instead, the

images and cameras are connected directly to the physicalization and the viewer, and

thus will always be available without setup. This also means that it is not necessary to

track both the user’s head position and the physicalization; the relative offset from the

image target to the tracking camera is sufficient to place the physicalization in 3D space.

It is possible to perform an initial registration with image targets, then switch to the

AR HMD’s onboard 6DoF tracking to maintain the alignment. The onboard tracking is

lower-latency, but it does not allow a user to manipulate the physicalization interactively,

for example, to spin it around to view the other side. In practice, we found that the

Magic Leap’s internal room-scale tracking system was not accurate enough to maintain

sufficient alignment between the virtual and physical content of the visualization without

continuously enabled image tracking.

The key to optimizing an image-based tracking system is to understand the trade-

offs in design choices for the number of images used to track objects and their placement

in physical space. Thus, our design decisions focus on these two issues.

69



Figure 5.3: The experimental setup to optimize latency for image-based tracking in-
cludes (A), an oscillating image target, (B) boundary extraction for the virtual and
physical object positions, and (C) positional samples of virtual and physical target used
to determine latency. Image (D) shows the latency results based on number of targets.

To optimize the number of images used to track the physicalization, we conducted

an experiment to measure latency of the tracking system based on the number of image

targets in view of the tracking camera. Figure 5.3A shows the approximate view of the

AR device facing the sinusoidally oscillating image tracking assembly with a variable

number of image targets attached. Video was captured through the left eye of the

AR device of a virtual object’s position tracked with the physical object’s location, and

computer vision methods were used to extract the true positions of the physical and

virtual objects in the scene (Figure 5.3B). Lastly, following Steed’s Sine Fitting method,

both the virtual and physical object trajectories were fit to a sine curve, and the latency of

the system was calculated as the phase distance between the two curves [Steed, 2008].

We found that the latency of the image tracking system does indeed increase with

the number of simultaneously visible targets; we found a latency of 172ms, 211ms, and

240ms for 1, 2, and 3 targets, respectively. This suggests the physicalization tracking will

have the lowest latency when tracked by just a single image. Using positional accuracy

measurement methods based on Groves et al. [Groves et al., 2019], we verified that

tracking just a single image is sufficiently accurate, providing sub-millimeter positional

accuracy for a comfortable viewing distance of 30cm. However, we found it impossible

to find a position where a single image could be placed next to the physicalization and

force-sensing tablet while also providing reliable tracking from all viewing angles.

This led us to consider a stage or stand for the physicalization that provides a

good tracking target from any viewpoint but limits the view to one (ideal) or at most

two image targets at a time. Our starting point was a box with one image on each

vertical side. However, noting that prior work has shown that image targets track most

accurately when viewed from non-perpendicular angles [Abawi et al., 2004], we further

refined the design to the truncated pyramid shape pictured in Figure 5.2. The four-sided,

truncated-pyramid base minimizes the number of targets simultaneously visible from any

viewpoint, while tilting the sides of the base to an angle of 40° from vertical, which,
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based on the previously reported data [Abawi et al., 2004], should optimize tracking for

the top-down and side-on perspectives, as illustrated in sub-figure (III).

Our implementation uses commercially available software and hardware. A Magic

Leap is used to display the augmented reality content with a resolution of 1280 x 960

pixels per eye, a horizontal field of view of 50°, and a 120Hz refresh rate. Optical

tracking uses Vuforia [PTC, 2020]. Graphics are rendered using the Unity game engine,

and a custom shader is used to occlude the augmented reality graphics with the physical

model, as shown in Figure 5.1 right (though a user’s fingers do not occlude the graphics).

It should be noted that the images in this chapter containing AR visualizations were

generated using the Magic Leap’s built-in screen capture system, which had a screen

space offset between real-world and virtual content of approximately -0.037 units in the

x direction and -0.006 units in the y direction. This was compensated for by visually

calibrating the scene to a physical target before making the screen captures.

5.3.2 Sensing Multi-Touch Input on 3D Physicalizations

Our design for sensing touch through a 3D printed terrain-like surface builds upon related

work and workshops on the theme of “Touching the 3rd Dimension” [Steinicke et al.,

2012]. Extending the fluidity of multi-touch interaction off the surface of the screen

and into/onto spatial displays is a longstanding goal of this research, which includes

work on perceptual illusion [Bruder et al., 2011], tracking 3D gestures anchored to a

surface [Jackson et al., 2012c], redirected touching in purely virtual environments [Kohli,

2010], and even dynamically inflatable multi-touch surfaces [Stevenson et al., 2010].

Figure 5.2 shows our solution for translating physical touch into virtual environ-

ments. To enable multi-touch interactions directly on the physicalization, it is split into

a series of hexagonal columns with a radius of 0.75cm. This size of hexagon is chosen

to be small enough to approximate the radius of a human fingertip yet maintain a man-

ageable number of columns for the entire physicalization. Tiled hexagons are used to

avoid the rigid visual structure that a regular square or rectangular grid imposes on the

physicalization.

It should be noted that while the resolution of each column is fairly coarse, sub-

hexagon touch precision is achieved by placing the partitioned physicalization atop a

high-resolution force-sensitive surface, a Sensel Morph [Sensel, Inc., ]. The hexagonal

columns have flat bottoms which enables our software to interpolate a user’s touch

position within a hexagon. The Sensel Morph has a size of 24cm x 13.85cm and

contains 185 x 105 force sensing elements which detect forces 0.049N-49N.

Using polygonal columns on such a sensitive device presents its own series of chal-

lenges. Firstly, as the user presses down on a particular column, multiple touch points
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Figure 5.4: (Left image) The physicalization and force-sensing surface are placed on
a truncated pyramidal base. The base is situated onto a large fabric poster with con-
textual NASA satellite imagery around the Filchner-Ronne ice shelf in the Antarctic.
The imagery is not to scale with the physicalization. (Right image) Worlds-in-miniature
allow the user to view their data at multiple scales. All interactions still take place on
the physicalization; when users are focused on the larger world, the physicalization acts
as a haptic proxy.

may be registered by the device from the column’s edges contacting the surface. In

order to remove these “ghost” touches and ensure there is only one touch point reg-

istered for each finger, configurable parameters are used. Since the physicalization is

divided into 0.75cm columns, an assumption is made that two fingers will never touch

the same column – if a cluster of touch points within a diameter of 1.5cm is registered,

the point inside this cluster with the greatest force is kept and the remainder are culled.

To remove any other ghost touches remaining from the weight of the physicalization or

other physical factors, the touch points are thresholded such that those with at least

5x less force than the others and those with an absolute force of less than 0.98N are

ignored. Once the touch points are filtered, they are made available on a network us-

ing VRPN [Taylor et al., 2001] in order to be accessed by other devices such as the

augmented reality display.

In addition to the well-developed application to Antarctic ocean current simulations

described in detail later, we have also successfully applied these strategies for multi-

touch input and tracking to other datasets, such as the flow field in a pipe, pictured in

Figure 5.2.

5.4 System and Interaction Techniques for Multi-Touch Query-

ing on Data Physicalizations

This section describes how three classic interactive data querying techniques can be

re-implemented in the new context of hybrid virtual+physical visualization. Before

describing these in detail, we begin with a brief overview of the system architecture

72



Figure 5.5: Streamlines are interactively seeded by moving a finger around on the surface
of the physicalization and releasing (left), while cutting planes are created by using two
fingers (right).

used in our implementation.

5.4.1 System Overview

Our system architecture includes four components: the immersive augmented reality

visualization, the multi-touch physicalization attached to a computer, the data host,

and the visualization host.

Let us motivate this multi-component system by following the steps a user might

take when making queries into a visualization. The user begins by donning an AR device

in a space near the data physicalization. Figure 5.1 shows an approximate view of what

the user might see here; the immersive AR content for that visualization is spatially

registered to the physicalization using optical image-based tracking of the target images

shown in Figure 5.4 (left). When the user touches the physicalization, this input is

sensed as described in Section 5.3.2 then relayed to the AR device by a VRPN server on

the touch host. The AR headset in turn calculates the proper virtual position of each

touch point. After converting the touch points from room-space to data-space using a

series of affine transformation matrices [Jackson and Keefe, 2019], a VTK data query is

synthesized and sent to the data host as an HTTP request. Query results are calculated

on the data host using VTK [Schroeder et al., 2004], and a geometric representation of

the data is sent back to the AR headset and displayed in the visualization.

While not the focus of our human-computer interaction research, a companion touch

screen interface is also supported in this architecture for input related to system control

(e.g., specifying a timestep to view or switching between query modes). Additionally,

we provide a touch-enabled design user interface that allows all data-to-visual mappings

on the AR visualization to be modified interactively [Herman et al., 2020]. The AR

visualization is rendered using the Artifact-Based Rendering (ABR) technique [Johnson

et al., 2019b], delivering visually rich graphics to complement the data physicalization.
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5.4.2 Streamline Seeding Interaction

Figure 5.5 (left) depicts a demonstration of an interactive stream rake widget that seeds

streamlines along a line segment defined by a point on the surface of the physicalization

and a second point directly above it. Streamlines are one of the essential tools for

exploring fluid flow data from computational fluid dynamics and other numerical sim-

ulations [Nielson et al., 1997]. In particular, stream rakes are used to create and view

a collection of flow lines that pass through multiple seed points that are evenly spaced

along a user-defined line segment. Variation between the resulting flow lines can then

show researchers how flow patterns change along the axis defined by the line (ocean

depth in our case).

In our implementation, the base of the rake is defined by a user’s touch point

on the physicalization and the up vector. As the user moves their finger along the

physicalization, a preview of the seeding line is displayed on the AR device and updates in

real time. The streamline resolution, number of seed points, and length are all adjustable

parameters. When the streamline rake is selected, its coordinates are converted into

data-space. Coordinates are sent to the data server, where VTK components are used

to advect the streamline geometry. The streamlines are then sent back to the immersive

AR visualization application, as shown in Figure 5.5 (left).

5.4.3 Cutting Plane Interactions

Figure 5.5 (right) demonstrates a cutting plane query defined by a user’s two touch

points on the physicalization. Interactively creating cutting planes is another useful tool

for exploring 3D volumetric data [Klein et al., 2012]; they allow a user interactively

define a 2D slice into the data.

In our system, the user’s two touch points and the up vector define a basis for the

cutting plane. Again, an interactive preview of the plane is updated in real-time as the

user moves their fingers. When these touches are released, the coordinates are converted

into data-space and sent to the data server. VTK components are used to create the

cutting plane geometry which is then returned to the immersive AR app.

5.4.4 World-in-Miniature Widget

The ability to explore data at multiple scales is another indispensable technique in

scientific visualization [Nielson et al., 1997]. Worlds-in-miniature [Stoakley et al., 1995]

is a technique that makes it possible to view a virtual environment at different scales while

simultaneously interacting with a proxy that is at a comfortable scale. This technique

has been used extensively in visualization research, for instance to compare forest plots
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Figure 5.6: Touch accuracy was measured with and without the tiled physicalization
present. Random Cartesian coordinates are projected on the bare force-sensing surface
or physicalization (A), and a participant touches these points (B). Image (C) shows
positional error across conditions. Error bars show CI95.

over time [Nam et al., 2019] and to explore flow data via multimodal displays [Coffey

et al., 2011a].

Figure 5.4 (right) shows our implementation of worlds-in-miniature using the hybrid

virtual + physical visualization model. The hybrid worlds-in-miniature technique uses the

data physicalization as both a primary view for the data and as a haptic proxy [Nilsson

et al., 2020] for a larger AR visualization.

5.5 Evaluation and Application

Returning to the goals and requirements stated earlier, supporting exploratory visual-

ization tasks requires a robust, high-accuracy pipeline for capturing multi-touch input

and a responsive display that can usefully update the digital aspects of the visualization

while maintaining accurate registration of the digital and virtual components. This sec-

tion reports on two complementary evaluations: 1. a quantitative lab study on touch

accuracy, and 2. an application to Antarctic climate science data and feedback from a

domain scientist.

5.5.1 Characterizing Touch Accuracy

We conducted a user performance study to better understand the low-level capability of

sensing multi-touch input through a data physicalization. During the touch study, the AR

device was not included because the touch coordinates reported to the Touch Host and

AR device are identical. Touch data were collected using the experimental setup pictured

in Figure 5.6, which was designed to detect touches at specific (x,y) coordinates with

and without the hexagonally tiled physicalization present. The study was designed as a

within-subjects, repeated measures A vs. B comparison of two conditions: touch input

sensed through a hexagonally-tiled physicalization (phys) and touch input sensed directly
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on the Sensel Morph’s touch pad (nophys). From our experience, we hypothesized

that the nophys condition would be close, but slightly more accurate than the phys

condition.

Methodology

Participants (n = 8) were recruited from the local computer science student population.

All participants were right-handed and all reported having normal or corrected-to-normal

vision. After informed consent, the participants completed a series of pointing tasks

in which they were instructed to touch a target as accurately as possible with their

dominant-hand index finger. The tasks were presented in three blocks of 30 trials each.

The first block was used for training and consisted of 30 trials in conditions alternating

between phys and nophys. During the second and third blocks, participants touched

points on the bare force-sensing tablet (condition nophys) and the physicalization atop

the tablet (condition phys). The order of these two blocks was counter-balanced across

subjects to ensure minimal learning effects.

Target touch points were generated using a random uniform distribution across the

24cm x 13.85cm physical surface. Each random point was then displayed sequentially to

the participant via a projector aligned with the force-sensing surface (see Figure 5.6 A);

each point was revealed after the participant had completed the touch action for the

prior point, and points were visualized with a diameter of 5mm. The participant’s touch

points were recorded after filtering to remove ghost touches (using the strategy described

in Section 5.3), and additionally adjusting for the Sensel Morph’s hardware offset (x:

3.2mm, y: -2.6mm) and scale factor of 0.97.

The physicalization used in the study was of a synthetic terrain dataset and was

the same for all participants. The terrain data were generated by adding 50 randomly

distributed Gaussian peaks to create a bumpy surface with a maximum height of 8mm

(Figure 5.6 B). These synthetic data were used, rather than the pipe or Antarctic data

presented elsewhere in the chapter, because we determined in pilot testing that a flatter

surface was needed to avoid distortion effects when projecting the target points on the

physicalization.

Results

Touch data were recorded for 8 users × 30 points, totalling 240 data points for each

condition. 18 duplicate touches (touches that registered within 0.5s of each other) were

registered for nophys and 38 were registered for phys; as is common in touch-tracking

software, these duplicates were averaged and counted as one touch. Additionally, 10

expected touches for nophys and 4 expected touches for phys were not detected as they
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were either within the dead zone surrounding the force-sensing tablet or below the force

threshold in our touch reporting software.

Touch accuracy was measured by calculating the touch error as the Euclidean

distance between the ground truth Cartesian coordinates and the coordinates of a par-

ticipant’s touches. Four points with an x or y coordinate more than 3σ away from the

mean were considered outliers and discarded.

As shown in Figure 5.6C, participants selected points more accurately under the

nophys condition (µ = 3.09mm, σ = 1.64mm) as compared to the phys condition

(µ = 3.22mm, σ = 2.1mm). A Shapiro-Wilk test showed that the data were not

normally distributed (p < 0.0001). Thus, a Wilcoxon signed-rank was used to analyze

significance. The two-sided Wilcoxon signed-rank test indicated that the physicalization

did not have a significant effect on touch error (p = 0.753); thus, we fail to reject the

null hypothesis that there is no difference in mean touch error between conditions.

Interpretation and Discussion

Comparing the results of touch error between conditions indicates that the average

Euclidean distance between a participant’s touch points and the ground truth points

was slightly greater in the phys (3.22mm) condition than in nophys (3.09mm). We

did anticipate some difference in this direction since the rigidity of the physicalization

hexagons certainly contributes some error. However, after observing participants during

the study, we also suspect that some error was due to shadows in the projection used

to display touch point as well as the physical pixel size (about 0.5mm x 0.5mm).

These combine to leave us surprised that the study was unable to detect a signifi-

cant difference in touch accuracy across approximately 240 trials. Other factors could

also impact this result. For example, the number of participants was small and their

backgrounds rather homogeneous (limitations necessitated by the constraints of the

COVID-19 pandemic).

Despite these factors, we take the study as a promising initial characterization of

the feasibility of the core concept behind our tiled physicalizations–that the force of a

participant’s touch can be transferred directly through the column to the tablet, opening

the door for sensing touch through the type of rigid 3D printed physicalizations that are

most easily created today.

5.5.2 Antarctic Climate Science: Application and Feedback

To assess the potential of multi-touch querying on data physicalizations in a real-world

scientific context, we constructed the augmented physicalization pictured in the exam-

ples throughout this chapter and conducted a user interview with a climate scientist
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Figure 5.7: Streamlines are seeded based on the velocity of the ocean currents under-
neath the Filchner-Ronne ice shelf, and are colored by the ocean temperature. Glyphs
are distributed based on a density-based point sampling of the Ice Shelf Water mass.
The grounding line where the ice intersects with the water and land is shown as a ribbon
on the visualization.

collaborator actively studying the phenomena. The Filchner-Ronne ice shelf in Antarc-

tica is of significant interest to climate scientists because ice shelves extending from the

Antarctic continent prevent ice sheets on the continent itself from melting rapidly and

flowing into the sea (see Figure 5.7). The water content of the Antarctic ice sheets

and shelves combined has the potential to inundate many of the planet’s major coastal

population centers if completely melted. The melt rates beneath the ice shelves exceed

the surface melt rates and are difficult to monitor, as water masses and currents of

varying temperature, salinity, flow rate, and more must be tracked and are invisible from

the surface. A more detailed understanding of the currents, their intensity, and their

temperature will enable scientists to more accurately predict the melt rate of the ice

shelves, which play a critical role in sea-level rise as well as climate patterns across the

globe [Petersen et al., 2019, Jeong et al., 2020, Abram et al., 2021].

Technical results of the application to climate science in Antarctica’s Filchner-Ronne

ice shelf are pictured throughout the chapter as well as in the accompanying video. All

three of the classic data querying interaction techniques described in Section 5.4 are

applicable to these data and are controllable via multi-touch queries made on top of the

Filchner-Ronne ice shelf 3D print.

Data Conversion

Due to the physical constraints of the direct-touch sensing mechanism, a subsection

of the Filchner-Ronne ice shelf was selected based on conversations with collaborating

climate scientists about areas of interest within this region. The subsection measures 945

km by 545 km, and underwent transformations from its original coordinate space in the

climate simulations, including a stereographic projection, a vertical exaggeration of 60x,

clipping and scaling to the size of the force-sensing tablet, and finally segmenting into

hexagonal columns as discussed in Section 5.3.2. Special care was taken to preserve the
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original directionality of the ocean current flow vectors when applying the stereographic

projection and performing affine transformations on the data. Hexagonal columns of

the surface data were 3D printed with a layer height of 0.15mm, taking a total print

time of about two days for the 247 hexagons in the segmented surface data.

Figure 5.4 (left) shows the 3D printed region of interest along with NASA satellite

imagery from the Filchner-Ronne ice shelf. Tracking images that align the virtual and

physical visualizations are adapted from NASA satellite imagery, which provides addi-

tional context for the position and orientation of the virtual data and the physicalization

relative to a bird’s-eye view of Antarctica. The images are affixed to the truncated

pyramidal tracking base, and the context they provide is enhanced by placing the entire

assembly on top of a large 2D poster, extending the Antarctic imagery.

Climate Scientist Interview

The interview was conducted with one investigator physically present and two remote in-

vestigators joining via video conferencing. We began the interview process by asking the

climate scientist to explore the system, using a “think-aloud” approach as we directed

him through a series of introductory tasks designed to demonstrate the capabilities of

our system. These tasks included seeding streamlines, creating cutting planes through

the volumetric data, and using the multi-scale view to view details of the ocean current

mixing. We then prompted the scientist throughout his exploration process with ques-

tions designed to encourage both constructive criticism about the system as a whole

and feedback on the scientist’s usage of the system. Questions included, for example,

“How does it feel to explore your data in this format?” and “How do you think this

configuration could play a role in your collaboration with peers?”

When setting up the physicalization for the interview, we noted that the orientation

of the physical data object relative to the user is a critical consideration [Sauvé et al.,

2020]. The bathymetric physicalization was oriented with North facing away from the

user, a common perspective that the scientists use when working with these data.

The interview revealed several preliminary insights. Following the introduction tasks,

the climate scientist conducted a rapid “lay-of-the-land” exploration by touching the

printed bathymetry in several locations, seeding clusters of streamlines to understand the

velocity, temperature, and direction of interesting flow patterns. He noted our system’s

utility in selecting streamlines precisely on the surface and added that automatically

seeding an initial set of streamlines at the start would help narrow down areas of interest

in the data.

The climate scientist reacted to the physicality of the data visualization, saying “The

fact that the data overlays something physically is really wonderful...I’ve never experi-
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enced this before. There’s a really intuitive feel to it.” and “[The printed bathymetry]

really grounds you and provides useful context for the data itself.” He noted the sys-

tem’s potential for improving his group’s research and inter-scientist communication

more generally, particularly if a future iteration of the system acted as a centerpiece

that team members could walk around, examine, and reference interactively on a table-

top. He further indicated that a hybrid system might increase public interest and improve

communication of critical but complex concepts in this field.

In addition to these overarching comments, the climate scientist provided useful

feedback on several specific aspects of the design. He observed of the hexagonally-

segmented physicalization itself, “I like the hexagons... it’s much more stable [than

squares], and I think having squares instead of hexagons would be much more distract-

ing.” The scientist expressed particular interest in the grounding line – the line where

water, depressed by surface ice, meets the land. This feedback prompted the grounding

line’s inclusion as shown in Figure 5.7. He also stated that a larger physicalization of

the bathymetry would have been extremely useful, even if it wasn’t all touch-sensitive,

adding that he found himself primarily using the printed bathymetry as an orientation

device as opposed to searching for small details in the physicalization. This observation

was striking. Counter to our expectations, the physicalization became a spatial marker

in three dimensions that acted as a peripheral canvas for the data of greater interest as

opposed to a primary data object itself.

Although the subjective user feedback presented here should be treated only as an

early data point in understanding the potential of this approach, the interviewed scientist

and other collaborators noted several use cases where there is strong potential for hybrid

virtual + physical visualization. Speaking on the subject of collaboration, one scientist

remarked “Having it available to work with and show other scientists – I think there’s

a lot of potential there.” Furthermore, “There’s a lot of potential for people to see and

get excited about the science because it’s something new and interesting.”

5.6 Discussion

5.6.1 Limitations

Our approach to hybrid visualization, while a novel step forward, has two principal

limitations. First, for some workflows, the digital fabrication time may be prohibitive.

Printing time can be reduced by increasing the layer height, but this comes at the cost of

a lower-resolution model. However, our scientist feedback interview indicates potential

for some flexibility in resolution, depending on how a user identifies and works off of the

physicalization.
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Another issue that emerged with the hexagonal column design is the challenge of

keeping all the tiles linked together. Researchers needed to be cautious when moving

the physicalization from the 3D printer to the touch surface, as the hexagons could

become a 3D puzzle very quickly if dropped. Currently, we mitigate this issue with the

3D printed frame shown in blue on Figure 5.2 I-C, which nicely holds the tiles in place on

the surface but will not prevent them from scattering if turned upside down. Although

several prototypes for linkage between hexagons together while preserving complete

touch sensitivity have been made, we have not yet found a foolproof resolution.

5.6.2 Potential for Other Applications

Our solution to hybrid virtual + physical visualization has been applied to several

datasets so far, including those shown in this chapter, though our solution is not limited

to such data. We have considered, for example, applying this technique to brain mi-

crostructure data as well as treatment-planning data from radiation therapy procedures.

In these anatomical cases, we would physicalize a slice or surface out of a CT scan and

segment it, enabling the domain scientists to create cutting planes and interactively seed

directional glyphs at points of interest to further explore their data.

The addition of a force-sensitive surface underneath the physicalization also opens up

new possibilities for interactive modular techniques that not only leverage a user’s touch

but also the touch’s pressure. This is not a new area of research [Buxton et al., 1985], but

its application to 3D exploratory visualization could inspire new data querying widgets,

such as sampling glyphs with density determined by pressure or using pressure to control

the number and length of streamlines. Further, such systems present new and highly

complex visual design challenges and open new avenues for experimentation, including

the materiality, appearance, and scale of the physicalizations and their interactions with

the virtual visualization.

5.6.3 Further Touch Sensing Evaluations

One of the most interesting discussion points raised by the touch accuracy study is

the issue of what accurate touch means when sensing touch through a physicalization.

The results from the study in Section 5.5 suggest that there are many contributing

factors, both hardware and software. While the parameters of the touch-filtering algo-

rithm remained constant throughout the study and application, these are all individually

adjustable to achieve a more accurate touch and further avoid duplicate and missed

touches. Such tuneable parameters may include the clustering diameter, minimum ab-

solute force threshold, and force threshold relative to other touch points on the surface.

Beyond these software parameters, we must also consider the hardware setup – what is
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the effect of polygon size on touch accuracy? Polygon shape? Height of the columns?

The durability and linkage between columns? This last item proved to be of particular

interest; during the touch study, several participants voiced concerns about “breaking”

the physicalization during the phys condition, and one managed to unseat a hexagonal

tile while touching the physicalization. These are all factors that have the potential

to impact accuracy of a multi-touch physicalization, and thus need to be evaluated in

future studies. Additional studies must also be run (e.g. in the style of [Jansen et al.,

2013]) to test the exploratory capabilities and interactive techniques used in the hybrid

visualization system.

5.7 Conclusion

In this chapter, we presented a new approach to multi-touch sensing on data physi-

calizations and combining physical and virtual data together into a single, interactive

queryable visualization. The motivation for the work was to fuse the “best of”

physicalizations and virtual displays; specifically our goal was to create a form of data

physicalization that can be used for interactive, exploratory visualization. We demon-

strated that this is indeed possible; in fact, we showed for the first time what three

classic spatial data exploration widgets might look like when designed for use with a

data physicalization in conjunction with immersive AR. The preliminary quantitative lab

study of touch accuracy lends support to the feasibility of the core concept of sensing

touch input through a tiled physicalization surface, and the application to exploratory

visualization of Antarctic climate simulations demonstrates how the sensing and inter-

action techniques can be used with real data. We believe the sensing solutions and

interactive techniques presented here are a major step forward for the future of hybrid

visualization platforms. This exploratory research provides evidence for significant future

potential of interactive, surface-based hybrid visualization. As a whole, this work pro-

vides the first example of such a physicalization that supports the style of back-and-forth

human-in-the-loop needed by today’s scientific sensemaking processes, and comments

from the scientist feedback sessions showed that this visualization modality has a strong

potential to make scientific data both more comprehensible and more embodied.

82



chapter

six
Touching the Ground:

Evaluating the Effectiveness
of Data Physicalizations for
Spatial Data Analysis Tasks

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

6.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

6.2.1 Evaluating Visualizations . . . . . . . . . . . . . . . . . . . 87

6.2.2 Comparing Physicalizations and Digital Visualizations . . . . 89

6.3 Study Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

6.3.1 Hypotheses . . . . . . . . . . . . . . . . . . . . . . . . . . 90

6.3.2 Modalities and Visualization Design . . . . . . . . . . . . . 92

6.3.3 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

6.3.4 Tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

6.3.5 Experimental Procedure . . . . . . . . . . . . . . . . . . . . 99

6.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

6.4.1 Quantitative Measures . . . . . . . . . . . . . . . . . . . . 103

6.4.2 Qualitative Feedback . . . . . . . . . . . . . . . . . . . . . 110

6.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6.5.1 Interpretation of Results . . . . . . . . . . . . . . . . . . . 112

6.5.2 Implications of Physicalization on Spatial Data Analysis . . . 115

6.5.3 General Discussion . . . . . . . . . . . . . . . . . . . . . . 118

6.6 Limitations and Future Work . . . . . . . . . . . . . . . . . . . 119

6.6.1 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

6.6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . 120

6.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

83



Figure 6.1: Data physicalizations provide many benefits over digital data displays, in-
cluding haptic perception and providing an embodied reference frame for the data. This
chapter compares the effectiveness of spatial data physicalizations (left) with typical
virtual reality (middle) and 2D visualizations (right).

6.1 Introduction

For millennia, humans have used physical objects to help us make sense of the universe.

Physical objects have played a vital role in new scientific discoveries and scientific sense-

making processes throughout their history, from discovering the nonlinear relationships

between volume, energy, and entropy in thermodynamics [Kriz, 2007] to breakthroughs

in understanding the function of myoglobin storing oxygen within animal cells [Kendrew

et al., 1958]. Data physicalizations convey data through their geometric and material

properties [Jansen et al., 2015], and their capacity to support exploration and feedback

through touch enables yet-unparalled perceptual advantages compared with today’s most

advanced digital displays. Namely, physicalizations afford high resolution physical ren-

dering, suffer zero system latency, and enable physical interactions with data; they make

it possible to directly touch one’s data and make comparisons between points, to eas-

ily move and rotate a physical object, to engage multiple senses with the data, and

ultimately to take advantage of our own embodied human reference frame to make

judgments of size and distance [Hornecker, 2011].

There is a strong need to provide more evaluation-driven evidence to substanti-

ate these theorized benefits of data physicalizations, both by creating new evaluation

methodologies and by validating physicalizations against proven evaluation measures.

Some of data physicalizations’ benefits are well-documented through innovative means,

including their memorability [Khot et al., 2014], users’ engagement with the data [Hol-

stius et al., 2004], or even the sense of awe and emotion that they inspire in viewers [Se-

gal, 2015]. These physicalizations welcome a new era in visualization evaluation where

the user experience, engagement, emotion, and embodiment of visualizations are valued

alongside their comprehensibility with far-reaching results that speak to the humanity
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of data and visualization. Although physicalizations often push the boundaries of new

and innovative types of evaluation, many researchers remain unconvinced of the value

physicalizations provide due to the lack of “traditional,” performance-driven evaluations

in the physicalization community.

Typical visualization research performance evaluations measure the time and errors

of participants completing specific tasks with different visualization techniques, and

comparing quantitative results to determine which technique is better [Jackson et al.,

2012b]. In fact, such performance measures have been the main subjects of numerous

conceptual models highlighting the value of visualizations [van Wijk, 2005, Munzner,

2009, Stasko, 2014]. Evaluations in this traditional analytic style are valuable for deter-

mining the efficiency and performance of visualization systems; however, these are not

the only metrics for the viability of visualizations [Wang et al., 2019]; indeed they rarely

encompass all the components that make a visualization truly effective. Despite their

limitations, time and errors performance evaluations are still the predominant measure

with which different visualization techniques are compared, and very few instances exist

of these evaluations on data physicalizations. Thus, visualization practitioners remain

hesitant to adopt physicalization as a primary modality of data analysis because its

performance advantages are not yet well-evaluated compared with current digital visu-

alization technologies, and critics of data physicalization remain unconvinced that the

additional time and material costs of producing a physicalization are worth it for the

theorized benefits physicalizations provide.

As a first step to validate the theorized perceptual and embodied advantages of data

physicalizations, a small number of prior studies have evaluated the performance of data

physicalizations compared with digital visualization modalities. Jansen et al. found that

participants took much less time solving tasks with physical 3D bar charts than with

3D desktop visualizations [Jansen et al., 2013], and Danyluk et al. found similar results

with task time when comparing physical 3D bar charts with VR visualizations of the

same charts [Danyluk et al., 2020]. While these evaluations show promising results for

the utility and performance of using data physicalizations for data analysis tasks, further

evaluation is required to validate and generalize their results beyond the specific data

and tasks that were used.

Specifically, more evaluation is needed for physicalizations that target spatial data.

While many examples from the literature physicalize spatial data, they are predominantly

data sculptures intended for public consumption [Lozano-Hemmer, 2004, Meier, 2017]

or proof-of-concept systems with no comparison between other visualization types [Gillet

et al., 2004, Le Goc et al., 2019, Ang et al., 2019]. These types of physicalization are

important and necessary for advancing the state of physicalization research and com-
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municating data in new ways, but their existence does not negate the fact that there is

an alarming lack of evaluation for spatial data physicalizations: out of 33 data physical-

izations categorized as “SciVis” (spatial data) in a recent survey paper [Djavaherpour

et al., 2021], only 10 contained a user study evaluation of any sort, and not a single

one evaluated spatial data physicalizations with respect to existing digital visualization

techniques. Many factors contribute to the current lack of evaluation in physicalization

with spatial data, not the least of which being the inherent differences between spa-

tial and non-spatial data. Spatial data are distinguished from non-spatial data by the

fact that their structure (i.e., placement in space) is given by the data, as opposed to

non-spatial data where the data’s placement in space can be chosen by the visualization

designer [Munzner, 2008]. This makes them uniquely challenging to visualize and phys-

icalize, especially when multiple data variables are involved, as is common with current

scientific data. Notwithstanding these factors, there is still a clear gap in the research

for evaluation of spatial data physicalizations.

This chapter presents an evaluation of spatial data physicalizations compared with

digital visualizations to address this gap. The work is critical to the visualization com-

munity because it contributes the first study in the literature which evaluates the ef-

fectiveness of physicalizations and digital visualizations in 2D and in virtual reality, for

spatial data analysis tasks, as shown in Figure 6.1. Justified by prior studies, we hy-

pothesize that physicalizations will – at a minimum – give performance measures no

worse than the digital modalities, and that haptic perception and embodied interac-

tion play a critical role in comprehending the data in the physical modality. To test

all three modalities, participants complete three spatial data analysis tasks typical of

those required in scientific sensemaking processes. We report the performance measures

(time and errors) for each modality and task along with subjective measures (confidence

and questionnaire feedback) provided by participants about each modality, and share

the results which echo prior studies comparing modalities that physicalizations perform

similarly to digital visualizations in most cases. Finally, we discuss the implications of

data physicalization for spatial data analysis and scientific sensemaking processes.

6.2 Related Work

In this section, we introduce related work on evaluating the effectiveness of visualiza-

tions, and we build on the related work on data physicalization, tangible and embodied

interactions, and extended reality visualizations from Chapter 2.
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6.2.1 Evaluating Visualizations

For much of its history, visualization research was practiced as a craft rather than a robust

scientific endeavor; a strong emphasis was placed on the novelty of new visualization

techniques, while rigorous evaluation was less of a focus. Multiple calls to action were

published in the early 2000s to turn the field’s focus towards providing strong evaluations

that validate the effectiveness of novel visualization techniques and systems [Kosara

et al., 2003, Munzner et al., 2006]. In the two decades since, the field has seen a

pronounced shift towards user study evaluations as a means to validate the effectiveness

of visualizations: a Google Scholar search with the terms “‘user study’ + visualization”

reveals only about 600 results in the year 2003 (the year Kosara et al.’s call to action

was published), compared with approximately 5600 in 2023 (the time of writing of this

dissertation).

Throughout the expansion of the user study as a means to validate new visualization

techniques, multiple complimentary types of evaluation have emerged. Quantitative, ob-

jective values that are externally observed (e.g., time and errors) have been the primary

measure for evaluating visualization techniques. Additionally, more qualitative, open-

ended measures are available. Some qualitative measures impose a quantitative struc-

ture (e.g., a Likert scale), whereas others are assessed descriptively via coding or other

means and these qualitative measures are subjective, because they are self-reported.

Though the presentation of questions can be standardized across multiple experiments,

participants’ individual interpretations (and therefore responses) are not as verifiably re-

peatable across trials. Since there are so many evaluation methodologies now available

to visualization researchers, it’s imperative that the evaluation is designed to validate

the intended contributions of a visualization design or work [Munzner, 2009]. The re-

mainder of this section is devoted to exploring the related work in the evaluations this

chapter builds on.

So far, evaluations in visualization research have primarily been focused on the perfor-

mance, comprehension, and insights generated by new visualization techniques [Wang

et al., 2019]. Several models have been proposed to assess the value of visualiza-

tions: these models take into account aspects of evaluation such as effectiveness and

efficiency [van Wijk, 2005], and more specifically time, insights, essence, and con-

fidence [Stasko, 2014]. Some studies focus explicitly on participants’ time and errors

while completing visualization tasks to evaluate different techniques (e.g., [Laidlaw et al.,

2005, Zhang et al., 2016]). Other additional quantitative measures like number of in-

sights generated are also common (e.g., [Saraiya et al., 2005, Yi et al., 2008]), as is

measuring users’ confidence in a visualization or visualization technique (e.g., [Wixon,

2011]). The work in this chapter builds on these styles of time, errors, and confidence
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evaluations to compare 2D, VR, and Physical data visualizations with spatial data anal-

ysis tasks.

While most visualization evaluations are currently based on quantitative performance

measures, there has been an emerging body of research into evaluations beyond typical

performance measures, stemming from such events as the over-a-decade-running BELIV

workshop at the IEEE VIS conference [Bertini et al., 2008]. This work has prompted the

development of additional conceptual models that broaden the value of visualization, and

thus, the importance of new measures collected during evaluation that emphasize deeper,

more meaningful results than pure quantitative performance data can provide. Saket et

al. provide a review of visualization evaluations that focus on the user experience over

strict performance measures, emphasizing such goals as memorability, engagement, and

enjoyment [Saket et al., 2016]. Wang et al. propose an expanded model on the value of

visualization that takes not only a visualization’s intellectual contribution into account,

but also the emotional, social, and physical engagement the visualization provides [Wang

et al., 2019]. This model is especially relevant to evaluating data physicalizations; recall

from Chapter 2 that Tangible and Embodied Interactions with data physicalizations

can inherently provide these emotional, social, and physical values in visualization, by

their nature of being physical objects. Though the evaluation presented in this chapter

primarily focuses on the quantitative measures, the “intangible” benefits of tangible

visualizations are quite clear. So, in the study presented in this chapter, we record

additional qualitative measures that are better suited to capture the user experience and

added value physicalizations contribute over raw time and errors performance measures.

Finally, it is essential the tasks used for evaluations are designed to accurately val-

idate the visualization techniques used [Munzner, 2009]. Multiple taxonomies have

deconstructed how data stakeholders use various types of visualizations and abstracted

numerous tasks that are generalizable across application domains and datasets; here we

describe two examples relevant to the work in the rest of this chapter. Brehmer and

Munzner introduced a framework for classifying tasks based on their what, why, and

how [Brehmer and Munzner, 2013]. This framework takes into account factors such as a

user’s motivation fo competing a task, the method they complete the task with, and the

visualization components that enable task completion, and is validated through several

examples and cross-examination with theoretical frameworks on information-gathering.

More specific to spatial data visualization is the classification described by Laha et al.,

which generalizes tasks used for volumetric, spatial data [Laha et al., 2015]. This classi-

fication consists of six types of tasks commonly in diverse fields used to analyze spatial

data, and is evaluated with an online survey of visualization practitioners who commonly

use spatial data to generate new information and insights about their data. These two
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frameworks are used to describe the tasks in our study.

6.2.2 Comparing Physicalizations and Digital Visualizations

Taking inspiration from evaluations on digital visualizations, data physicalization re-

searchers have also begun to develop robust evaluations comparing their effectiveness

with other visualization techniques. The work in this chapter is inspired by two such

studies.

Considered the first evaluation comparing data physicalizations to current 2D and 3D

digital visualization modalities, Jansen et al. conducted a study which provided concrete

evidence of the quantitative performance benefits that data physicalizations provide over

digital data representations [Jansen et al., 2013]. Two studies were completed in the

publication, one comparing physicalizations of 3D bar charts with digital 3D bar charts

and 2D interactive linked-view bar charts, and one examining the role that touch plays

in solving data analysis tasks using these bar charts. Statistical data from GapMinder1

was used for both studies. In each study, participants completed three tasks: a range

task to to find the minimum and maximum data values of a given group, a compare task

to find the lowest value out of three given data points, and an order task to sort a group

of given values from smallest value to largest value. The results found that participants

performed significantly faster with 3D physical bar charts than they did with 3D digital

bar charts, and they performed the fastest in the 2D interactive modality. Additionally,

they concluded that the benefits of the physicalization are primarily from the embodied

interactions and the act of physically touching and actively exploring the data object,

rather than from just manipulating it.

Danyluk et al. introduced another study comparing participant performance on data

physicalizations and in virtual reality [Danyluk et al., 2020]. Their study design was

based on Jansen et al.’s original study with the same data and tasks, but the focus was

on comparing multiple scales of virtual reality visualization with data physicalizations,

with and without annotation capabilities. For all tasks and conditions, participants

performed fastest in the physical modality, and additionally rated it the highest in terms

of ease of use, speed, performance, and sharing with others. They concluded that while

VR visualization tools are significant for their interactive annotation capabilities, current

XR and digitally-driven haptics technology is a long way away from supporting the tactile

and embodied interactions that physical objects inherently support.

Besides these two evaluations, few others exist that compare the performance and

user experience of participants completing data analysis tasks, but we briefly describe

other related studies that evaluate different metrics here. Prior to the invention of

1https://www.gapminder.org/
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the term data physicalization, Tim Dwyer’s Ph.D. thesis explored the visualization of

abstract time-varying data in both physical and digital modalities, and showed that par-

ticipants perform some tasks more efficiently in the physical modality [Dwyer, 2004].

Drogemueller et al. conducted a study comparing the performance and user experi-

ence of participants solving tasks on graph visualizations with four variations of visual

and haptic feedback. They found that participants perceived themselves to be more

accurate when they could see and touch the visualizations (physical), but did not de-

tect any significant differences in performance [Drogemuller et al., 2021]. Ren and

Hornecker conducted a study measuring participants’ understanding and recollection of

physicalizations and VR visualizations, and found that most participants tended to an-

swer post-test questions faster when presented with the physicalization than with the

VR visualization [Ren and Hornecker, 2021]. Novel display technologies like handheld

spherical perspective-corrected displays (HPCDs) have also been compared with physical

representations [Berard and Louis, 2017]. Although this study didn’t use visualization-

specific tasks, they found that participants performed faster with the digital HPCD than

the physical object, though we note that participants were not able to touch the data,

thereby likely losing some of the benefits of physical data objects [Dragicevic et al.,

2021].

The study in this chapter takes inspiration from all these related works, and we

primarily draw comparisons with on the studies by Jansen et al. and Danyluk et al.

since they are the most relevant to the tasks used in this chapter.

6.3 Study Design

This section introduces a study design evaluating the effectiveness of participants per-

forming analysis tasks on spatial data in three modalities: a 2D visualization, a virtual

reality (VR) visualization, and a data physicalization (Physical). The design, structure,

and tasks of the study are all informed by two pilot studies with three participants each,

as well as two prior studies from the literature [Jansen et al., 2013, Danyluk et al., 2020].

Though the prior studies inspire the study design, we do not attempt to replicate these

earlier experiments due to the considerable differences necessitated by the switch from

non-spatial to spatial data. Henceforth in this chapter, we will use “prior studies” to

refer to these two specific papers.

6.3.1 Hypotheses

In this study, we test if participant performance measures in the Physical modality are

– at a minimum – no worse than the other two modalities. Our reasoning for this is

90



twofold. First, we know from the results of prior studies that participants perform certain

tasks faster with physicalizations than digital visualizations [Jansen et al., 2013, Danyluk

et al., 2020]. Second, we expect that performance measures are only the beginning of

the advantages that encoding data in physical form presents; physical data objects can

be more memorable [Cockburn and McKenzie, 2002], more relatable [Hornecker et al.,

2023], and engage audiences in a way that digital data displays currently cannot [Wang

et al., 2019]. So, if participants’ performance is no worse with spatial data physicaliza-

tions than with comparable digital visualizations, and physicalizations have considerable

benefits beyond performance, then physicalizations are an option worth considering as

a means for spatial data analysis.

Thus, our main hypotheses are:

• H1: Participants’ time measures are at least as fast in the Physical modality as

in other modalities.

• H2: Participants’ error measures are the same or lower in the Physical modality

than in other modalities.

• H3: Participants rate their confidence at least as high in the Physical modality as

in other modalities.

Though the primary focus of this study is on evaluating the comprehensibility of

data physicalizations through performance measures (time and errors), the additional

benefits of data physicalizations beyond performance are clear from the literature. Thus,

we are motivated to identify a set of exploratory research questions to further investigate

the outcomes of the study:

• RQ1: What role does touch play in the strategies used to complete spatial data

analysis tasks in each modality?

• RQ2: What are the benefits and drawbacks of physicalization for completing

spatial data analysis tasks?

Together with the main hypotheses, these research questions shape the design and

analysis of this study comparing physicalizations, virtual reality and 2D desktop visualiza-

tions for spatial data analysis tasks. Given the additional advantages of physicalizations

known to the literature (e.g., memorability, engagement, emotional connection, relata-

bility, and embodiment), the support of these hypotheses and investigations into the

research questions will motivate the adoption of data physicalizations in a variety of

contexts.
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Figure 6.2: Visualization design for the Physical (left), VR (middle), and 2D (right)
modalities. Insets show the details in each modality at the same location (circle B10).
Note the color and contour lines in the 2D, and the light and shadows in the VR and
Physical modalities.

6.3.2 Modalities and Visualization Design

Figure 6.1 shows the three modalities used in the study (Physical, VR, and 2D), and

Figure 6.2 shows detailed views of the visualization design in each modality. When

designing an evaluation for comparing multiple visualization modalities, one of the key

challenges is to make the comparisons between modalities as equitable as possible (i.e.,

not giving an inherent advantage to any one modality) [Carpendale, 2008]. In the

study design presented in this section, we proceed under the guiding principle that all

modalities should be made as equal as possible. We evaluate all three modalities using

digital elevation models (DEMs), each with a single scalar variable elevation.

Physical

Figure 6.2 (Left) shows the visualization design of the Physical modality. We start

with the design of the physical visualization since it is the most constrained of the

modalities (at least with current widely available digital manufacturing technology). In

the Physical modality, we encode elevation using the physical object’s height. In this

way, it resembles a scaled model of the topography at the physical location where the

data were recorded, but per our definition in Chapter 2, we note that it is still considered

a data physicalization (not a model), contrary to some definitions of the term [Dragicevic

et al., 2021].

Size plays a crucial role in the interpretability of data physicalizations [Jansen and

Hornbaek, 2016, López Garćıa and Hornecker, 2021]. In our case, we desire to scale the

physicalizations such that participants can pick them up; our pilot studies converged

on a size of 15cm x 15cm to be large enough for participants to examine the intricate,

high-resolution details of the spatial data but still small enough to hold, rotate, and
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touch. We also note that in prior studies participants were able to touch every bar in

the physical 3D bar charts. Touching every part of the data becomes more complex with

spatial data, especially since the data originate from real world elevations which tend to

be bumpy and result in small crevasses where a finger cannot touch. As such, we add

a constraint that the surface of every dataset must be at least 90% “touchable”. The

touchability constraint is verified during the data translation process; see Section 6.3.3

and Table 6.1 for more details.

The Physical modality also includes a physical legend to enable participants to look

up elevations. The use of a legend is primarily motivated by the current constraints of

digital fabrication: the physical data object is not of a sufficient scale to display labeled

contour lines and have the text be readable, and using a continuous colormap was not

feasible for the 3D printers available to us. The legend’s numeric values are correct

when the legend is resting anywhere on the flat margin surrounding the dataset. Every

trial starts with the legend on the right margin of the physicalization, but the legend

can be moved independently of the physical data object during trials.

The datasets for the Physical modality are 3D printed using a Stratasys Objet 500.

This printer is limited in the colors it can reproduce, so a neutral white color (Rigur)

is used for the base physicalization and the task overlay is black (Vero Black). The

physical data representations each weigh about 0.5kg.

VR

Figure 6.2 (Middle) shows the visualization design of the VR modality. For the VR

modality, we strive to create as close of a match as possible to the Physical modality for

consistency. The interactions in the VR scene mimic those in real life, including rotation

and translation, plus a bimanual scaling interaction to make the data larger or smaller.

Using the Unity Engine’s High-Definition Render Pipeline, we create physically-based

materials and lights that match those from the Physical modality as closely as possible.

For example, we match the positions, color temperature, and brightness of the lights,

and match the index of refraction, color, and subsurface scattering diffusion profile of

the physical material. However, despite these best efforts, the visualizations still do

not look completely identical (see the comparison in Figure 6.2, note the difference in

shadows). We attribute this to a combination of factors that have chronically plagued

digital displays throughout their history, such as color reproduction issues, lack of true

high dynamic range support, and light bouncing off objects in the real world that aren’t

fully modeled in the virtual scene.

Similar to the Physical modality, in VR we also encode elevation using the virtual

object’s height. The virtual object is initialized at a scale of 15cm x 15cm, but is

93



resizable by the participant. The VR modality also includes a legend for looking up

numeric elevations, and the same rules as the Physical modality apply regarding its

positioning. However, since the virtual scene has no physics or gravity simulation, the

virtual legend and virtual data object are positioned individually by the user without

constraints.

The VR modality uses a flat-panel perspective-tracked stereoscopic display (known

as a “fishtank” VR display [Ware et al., 1993]), coupled with bimanual spatial input

devices. The dominant hand input device is a pen-shaped wand with an activation

button; the non-dominant hand device is a simple textile loop with an activation button,

a simplified single-stage version of the finger sleeve device described in [Zeleznik et al.,

2002]. Virtual cursors are shown in VR for both hands, with the dominant hand cursor

at the tip of the pen and the non-dominant hand cursor offset 5cm along the direction

of the participant’s finger so it appears approximately at their fingertip. Together, the

head-tracked stereoscopic display and the input devices enable a participant to move

their head around to see different viewpoints of the data object, and to “grab” the data

object with their hands using the activation buttons.

The 3D display is a zSpace 300 with a screen measuring 61cm on the diagonal

at 1920x1080 resolution, a 120Hz refresh rate (60Hz per eye), and polarized ocular

separation. A fishtank-style VR display was used to give the VR modality the maximum

possible resolution compared with the Physical modality. The spatial input devices

consist of the zSpace built-in stylus and a Polhemus FASTRAK magnetic tracker, both

of which provide position and rotation inputs at 60Hz. All photos of the VR modality

were captured with a camera shooting through the zSpace tracked 3D glasses to obtain

the correct viewpoint.

2D

Figure 6.2 (Right) shows the visualization design of the 2D modality. The 2D modality

utilizes a typical 2D geographic information science (GIS) display of the data, and we

follow current guidelines for visualizing such data (e.g., [Eynard and Jenny, 2016, Slocum

et al., 2022]). Elevation is shown using a black-to-white colormap, where dark colors are

low elevations and light colors are high elevations; labeled topographic contours are also

shown at regular intervals along with five unlabeled sub-contours. The 2D visualization

supports mouse-based pan-and-zoom interactions typical of map-based visualizations.

Consistency Across Modalities

We note that all three modalities are capable of much richer visualizations that encode

multiple variables and include interactive filtering, querying, and annotation capabilities,
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which can make complex datasets more comprehensible [Shneiderman, 1996]. With the

expanding capabilities of digital manufacturing technologies, it is now possible to en-

code increasingly complex data in physical form [Djavaherpour et al., 2021], and with

recent work in augmented and active physicalizations (e.g., the approach to multi-touch

querying in Chapter 5 and interactive shape-changing tables [Taher et al., 2016]), it is

becoming progressively easier to introduce interactivity to data physicalizations. Prior

studies comparing visualization modalities have included such functionality (e.g., interac-

tive linked-view matrix plot and bar chart [Jansen and Dragicevic, 2013], annotation and

highlighting [Danyluk et al., 2020]), but these advanced capabilities were only included

for the digital modalities, not physical ones.

For this study, we return to the guiding principle that to accurately compare modal-

ities, visualization designs between modalities should be as equal as possible. We reflect

that the purpose of this study is not to compare interaction techniques or saliency of vi-

sual channels but to compare digital and physical modalities. Thus, we make the explicit

design decision to explicitly use as few visual/haptic channels as possible to represent a

single scalar elevation variable on the data, and for all modalities we only support basic

interactions that manipulate the view of the visualization.

6.3.3 Data

The study uses high-resolution continuously sampled spatial data typical of those used

in current data-intensive scientific sensemaking processes. Digital elevation models are

real-world spatial datasets that scientists often use to develop a better understanding

of the Earth’s surface, for example, the watershed of a particular river [Millar et al.,

2018], or the effects of land use on erosion [Tateosian et al., 2010]. This choice of

data is in contrast to prior studies comparing visualization modality which use discrete,

non-spatial data. Examples of the data represented in different modalities can be seen

in Figures 6.1 and 6.2. While it is difficult to fully control for the “difficulty” of these

data since they are from the real world, we chose datasets that had a variety of elevation

ranges.

Table 6.1 shows the details of the four datasets used in the study, all of which origi-

nate from real elevation data near Sequoia and Kings Canyon National Parks, California,

U.S.A. The data are downloaded from the United States Geological Survey open data

portal as 1-degree-square GeoTIFF images, each at 3612 × 3612 resolution2. Then, the

data are projected from their raw latitude/longitude into a Universal Transverse Merca-

tor (UTM) projection to end up with a 2.5D heightmap with correct distances in meters.

Lastly, the data are cropped into individual 24km x 24km squares, scaled down to 15cm

2 https://apps.nationalmap.gov/downloader/, 1-degree 3DEP data
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Dataset UTM Coordinates Elevation Range % Valid Points

0 -13247189.5, 4300449.7 1778m 96.9%
1 -13172667.3, 4300449.7 1189m 96.5%
2 -13209928.4, 4300449.7 1860m 91.6%
3 -13247189.5, 4369884.8 2694m 93.4%

Table 6.1: Four datasets are used for the study; dataset 0 is used for training only. The
upper-left latitude/longitude coordinates in a Universal Transverse Mercator projection,
the total elevation range, (maximum elevation - minimum elevation), and the percentage
of valid points in the dataset that are touchable are provided for each dataset.

x 15cm squares, and translated into 3D using Blender 3D modeling software and the

Blender GIS3 plugin. For the data shown in both 3D modalities, we apply a vertical

exaggeration of 5x to the height data, as is common practice in scientific visualization

(e.g., [Mitasova et al., 2012]); this leads to datasets ranging from 3cm - 7cm tall. Dur-

ing the translation step, we also verify the “touchability” of each dataset by sweeping an

approximated fingertip (a 10mm radius paraboloid, f(r) = 1

10
r2) over the surface and

checking to see if the “finger” intersects any other point on the surface. Any dataset

that had more than 10% of points where the finger intersected another point on the

surface was discarded.

Every dataset in every modality also includes an overlay which consists of a 10 × 10

grid of crosshairs marking points across the data; rows are labeled by letters A-J and

columns are labeled by numbers 1-10. Additionally, 10 circular “clocks” divided into 12

sections are included on the task overlay to provide enclosed areas and circular angle

references; 12 o’clock noon is North on every clock (pointing toward the top of the

dataset). The overlay geometry is created with a Blender Python script during the data

translation process. The components of this overlay together enable participants to

complete tasks relating to specific points and areas in the spatial data without repeating

the same task with any given point.

6.3.4 Tasks

Figure 6.3 shows the tasks used in this study. These three tasks are representative of

real-world questions a scientist might ask about spatial data, for example understanding

the gradient of steepest descent in a particular area (Advect), comparing elevations at

multiple data points (Compare), and finding the minimum and maximum elevation in a

particular area (Range). For all tasks participants are given a target to solve the task

on, identified by its row/column ID as shown on the task overlay in Figure 6.3. The

3 https://github.com/domlysz/BlenderGIS/tree/master
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Advect

Compare

Range
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100m

500m
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J4:

Max: 1300m

Min: 800m
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*

Figure 6.3: A grid of crosshairs and circles is overlaid on the elevation data to describe
targets for each task. Tasks include an Advect task to trace a path downhill from the
center of a target circle to the edge of the circle, a Compare task to determine the point
with the lowest elevation out of three target points, and a Range task to determine the
minimum and maximum elevation inside a target circle. Example ground-truth answers
notated with an asterisk *.
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three tasks are not trivial to complete, yet they are well defined in terms of task tax-

onomies [Brehmer and Munzner, 2013, Laha et al., 2015], and ground-truth answers are

programmatically calculable; this makes them ideally suited to this study. Additionally,

the Compare and Range tasks are adapted from prior studies, which will enable us to

cross-examine the similarities and differences in the effectiveness of data physicalizations

with and without spatial data.

The exact wording for the tasks given to participants is:

• Advect: Trace the path downhill from a given point until the path intersects the

surrounding circle. What heading (o’clock) does the path intersect the circle?

• Compare: Locate the three given points and determine which point has the lowest

elevation.

• Range: Indicate the range of elevations inside a circle surrounding a given point.

To complete the Advect task, participants are asked to trace the path of steepest

descent from the center of a target circle to the edge, and report the o’clock heading

where the downhill path intersects. This task is typical of data-intensive scientific sense-

making processes, and it can be described by Laha et al.’s classification as an absolute,

spatial understanding task. Participants are required to first search the dataset for the

target circle, then to develop a deep understanding of not only the 3D elevation data

within an area, but also its gradient of steepest descent. During the task introduction,

participants are instructed to imagine a tiny ball rolling downhill starting at the center

of the circle as an analogy to help with task comprehension. Participants are directed

to report their answers to the nearest quarter-hour (e.g., quarter past 3), which equates

to an angular resolution of 7.5°. This task is inspired by prior studies on fluid flow

visualization (e.g., [Laidlaw et al., 2005, Forsberg et al., 2009]).

To complete the Compare task, participants are asked to locate three target points

by their IDs and report which one has the lowest elevation. This task is typical of those

found in many information-seeking contexts in visualization; the motivation for the task

can be described using Brehmer and Munzner’s framework as locate and compare, and

it is an example of a relative spatial understanding task in Laha et al.’s classification.

Participants are required to locate each of the three points on the visualization, then

to make relative judgments of their elevations, and report their answer as the lowest

point’s ID.

To complete the Range task, participants were are to locate a target circle and report

its minimum and maximum elevation. This is another typical task seen across many

contexts in the literature. By Brehmer and Munzner’s framework, it can be described as

a locate, lookup, and identify task, and in Laha et al.’s classification it can be considered
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Figure 6.4: Procedure for the study. Participants complete 9 practice trials and 27
timed trials. Each block contains 3 modalities, and each section contains 3 tasks, each
with 4 trials (1 practice, 3 timed). In each trial, participants begin the trial by pressing
the “Start” button on the tablet, complete the task and state the answer verbally, then
press the “Done” button when they have a final answer.

an absolute quantitative estimation task. Participants are required to first locate the

target circle by its ID, then estimate and report the numeric minimum and maximum

elevation of the area within the circle.

Ground-truth task answers like those shown in Figure 6.3 are calculated directly

from the 3D DEM mesh data using a Blender Python script during the data translation

process. For the Advect task, the ground-truth path of steepest descent is calculated

by starting with the vertex at the center of the target circle and iteratively finding the

steepest gradient for all connected vertices until encountering the edge of the circle;

circles with a local minimum are excluded. For the Compare task, the ground-truth

answer is calculated as the minimum elevation of the three given points; each point uses

the elevation at the closest vertex in the DEM. For the Range task, the ground-truth

answer is calculated by finding the two vertices in each circle in the DEM with the

minimum and maximum elevation.

6.3.5 Experimental Procedure

Figure 6.4 shows the procedure that participants follow through the study. We use a

full-factorial within-subjects design where every participant is exposed to 3 Modalities

× 3 Tasks, each with 1 practice trial and 3 timed trials, so participants all complete

a total of 9 practice trials and 27 timed trials in the study. The presentation order is

counterbalanced with two independent balanced Latin squares, one for task and one for

modality. Participants are given the same dataset for all timed trials, which is one of

the datasets 1-3 shown in Table 6.1, and a separate dataset is given for practice trials

(dataset 0). The task overlay is designed to avoid repeating the same target more than

once for the same task in the duration of the experiment.

After informed consent, a short introduction to the study is given, including an

overview of the modalities used in the study, the task overlay notation with a quiz to

check participants’ understanding of the notation, and instructions on how to proceed
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through the study using the tablet interface. Additionally, we instruct participants to do

their best to respond to the tasks within one minute or so; the exact text used for this

section is:

Try to answer the prompt in <1 minute. Audio and visual prompts will be

provided at 0:30, and 1:00 onwards. If you find yourself beyond the 1:00

mark, try to finish up. Give it your best answer; no need to be perfect!

We added this time constraint because in multiple pilot studies, some participants tended

to take more than 5 minutes on certain tasks trying to make their answer perfect, and

this was problematic for minimizing fatigue effects. We found that one minute was a

sufficient amount of time for participants to converge on a reasonable level of accuracy.

With this constraint in place, participants took about 75 minutes on average to complete

the study.

Beginning each block, participants are introduced to each modality. Specifically, in

the VR modality we instruct participants how to use the bimanual controls to move,

rotate, and scale the virtual data object, and in the 2D modality we instruct participants

how to use the mouse buttons to pan and zoom the topographic map. Based on our pilot

studies, the Physical modality needs only a brief introduction stating that participants

are welcome to pick up, touch, hold, and manipulate the physical data object and legend.

At the end of each block, participants are given a questionnaire, and are instructed to

take a short break in between blocks.

At the beginning of each section, participants are given instructions on how to com-

plete the task in the current modality. During each section, participants complete 1

practice trial with a practice dataset, then 3 timed trials with a “real” dataset. Fig-

ure 6.4 (Right) shows the process participants follow in each trial: 1. Press “Start”

button, 2. Report answer verbally, and 3. Press “Stop” button when you have a final

answer. After each section is complete, participants are asked to report their confidence

for that section (modality and task pair).

Measures

For each trial, we record two objective, quantitative measures: the time participants

took and the errors participants committed. Time is measured as the time difference

between the participant pressing the “Start” button to begin the task and the “Done”

button to signify they had a final answer. Error calculations differ per-task, and all

represent normalized values 0 (correct) to 1 (incorrect). For the Advect task, error is

calculated as the percentage of a full circle away from the correct answer (e.g., 180°=

0.5). For the Compare task, a correct answer is reported as 0, and an incorrect answer
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as 1. For the Range task, error is calculated in Equation 6.1 as the absolute difference

between minimum and maximum elevations the user answered and the ground truth

range divided by the full data range of the dataset.

(|minuser − mincorrect| + |maxuser − maxcorrect|)/2

maxdata − mindata

(6.1)

To obtain further insights into participants’ user experience and task-solving strate-

gies, we also record multiple subjective measures. First, participants report their confi-

dence at the end of each section (modality and task pairing). Specifically, a prompt on

the tablet asks participants “On a scale from 1 to 5, where 1 is least confident and 5 is

most confident, how confident were you in your answers for the section you just com-

pleted?”. Then, at the end of each block (modality), participants fill out a questionnaire

with free-response questions:

• Were there any positive factors that contributed to your experience with the user

interface? If so, please describe them.

• Were there any negative factors that took away from your experience with the

user interface? If so, please describe them.

• Were there any strategies that helped you complete the task? If so, please describe

them.

All sessions are recorded with a video camera to analyze how participants used each

modality by touch and manipulation.

Setup

Figure 6.5 shows the physical setup for the study, including a 3D display, a data physical-

ization and its corresponding legend set atop a square base, a mouse, a tablet, polarized

perspective-tracked 3D glasses, and bimanual spatial input devices. The lighting in the

room is controlled for the experiment: two diffuse lamps were mounted above and to

the sides of the work area, each 1200 lumens with a color temperature of 5000K; there

is an additional 180 lumen spot lamp to the left side pointing at the work area which

had a color temperature of 4800K. All prompts are displayed on the tablet; participants

also start and end each trial using buttons on this tablet. Except for breaks in between

each block, participants remain seated at the same position in front of the work area

for the duration of the study.

For the Physical modality, the physical data object sits on its base in front of the

user, the computer’s input devices are removed from the desk, and the screen on the

3D display is blanked. For the VR modality, the physical dataset is removed from the

101



Figure 6.5: Experimental setup for the study: A. 3D display; B. Data physicalization
and legend; C. Physicalization base; D. Mouse; E: Tablet; F. 3D Glasses; G. Spatial
input devices; H (inset): Controlled lighting sources. Not pictured: video camera.
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desk; 3D glasses are used to provide a perspective-tracked stereoscopic view of the

virtual visualization, and the spatial input devices are used to move, rotate, and scale

the virtual object. For the 2D modality, the same display is used with 3D mode turned

off; only the mouse remains on the desk enabling participants to pan and zoom the 2D

visualization.

Participants

The study included 24 participants recruited from a university student population and

a local musical ensemble via electronic newsletter and posted fliers. Multiples of 6

participants were necessary to ensure the validity of the balanced Latin squares for

modality and task, and we used G*Power [Faul et al., 2009] to determine the sample

size a priori with a medium effect size of 0.5. Thus, the study had 24 Participants × 3

Modalities × 3 Tasks × 3 Trials = 648 Total Trials. There were 10 Female and 14 Male

participants, ages ranging from 19 to 52. Three participants were left-handed, and all

participants reported having normal or corrected-to-normal vision. 5 participants had

never used VR before this study, and 6 had never used topographic maps (VRUsage =

have not used, and TopoUsage = have not used, respectively). At the end of the study,

participants were compensated with a $15 USD electronic gift card.

6.4 Results

This section reports results for the evaluation comparing 2D, VR, and Physical visual-

izations of spatial data. We give an overview of the results based on our hypotheses and

research questions identified in Section 6.3.1; we include results on the comprehensibility

of the data via objective quantitative performance measures (time and error), as well as

further subjective measures including quantitative confidence and qualitative feedback

from participants.

6.4.1 Quantitative Measures

Figure 6.6 summarizes the quantitative results on the time, errors, and confidence par-

ticipants had in each Task and Modality. Quantitative results are reported for each

measure, and results are separated by task, as performance and confidence between

tasks are quite different and comparing them is generally not useful.

To test the main hypotheses presented in Section 6.3.1, we used a two one-sided

test procedure (TOST) to test equivalence/non-inferiority of the Physical modality to

the other modalities [Walker and Nowacki, 2011]. This approach is better suited than

traditional superiority testing (i.e., repeated-measures ANOVA and pairwise t-tests) to
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Figure 6.6: Time, errors, and confidence results for the study. Error bars represent
95% correlation-adjusted confidence interval [Cousineau, 2019]. *Compare Error uses
standard 95% CIs because the assumptions of sphericity and compound symmetry.
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Figure 6.7: Pairwise time, error, and confidence differences between modality (Physical
− Other, 0 indicates no difference between modalities). The shaded regions indicate
the hypotheses from Section 6.3.1 (with the equivalence margin δ = 0.5, i.e. 0.5σpooled

from the differences), CIs completely overlapping the shaded region indicates support for
the hypothesis. Confidence intervals indicate 95% CI calculated from mean differences.
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test the hypotheses that Physical gives performance measures no worse than either other

modality. When using equivalence and non-inferiority tests, a critical decision is the

equivalence margin, also known as the smallest effect size of interest. The equivalence

margin for this study was determined using the standard mean difference effect size

from pilot study results, calculated using Cohen’s d [Cohen, 2013] and bias-corrected by

Hedges’ g [Hedges and Olkin, 2014]. We used symmetric upper and lower equivalence

margin bounds for the TOSTs as δlower = −0.5 and δupper = 0.5 (i.e., 0.5σ); this

also corresponds with the medium effect size used in our a priori power analysis to

determine the sample size. All TOST calculations were performed using the R package

TOSTER
4and the approach described by Lakens et al [Lakens et al., 2018]. Figure 6.7

shows pairwise differences between each modality for each measure with the hypotheses

from Section 6.3.1 shaded at 0.5σ to correspond with the equivalence margin used in

the TOSTs.

Except where noted, all confidence intervals refer to the 95% correlation-adjusted CI

appropriate for comparing groups in within-subjects designs, where the assumption of

sphericity and compound symmetry holds on the data [Cousineau, 2019]; CIs are notated

by square brackets in the text. For the time and error measures except Compare error,

the assumptions of log-normality and equality of variances held, so the log-transformed

measures were used for analysis.

Time

Figure 6.6 (top left) shows the absolute time results for each task, and Figure 6.7 (top)

shows the relative differences in time between the 2D and VR modalities compared

with the Physical modality, for each task; the shaded boxes for each task show the

non-inferiority equivalence margin of δ = 0.5σ.

For the Advect task, the Physical modality was fastest on average (mean 27.7s,

95% correlation-adjusted CI [25.5s, 0.0s]), followed by VR (31.6s [29.2s, 33.9s]) and the

2D modality was slowest (44.0s [41.5s, 46.5s]). The upper-bound non-inferiority TOST

indicated that Physical was not significantly slower than VR (t(71) = −13.37, p < 0.001)

and Physical was not significantly slower than 2D (t(71) = −16.53, p < 0.001). This

result supports hypothesis H1 for the Advect task.

For the Compare task, Physical was fastest on average (30.8s [28.3s, 33.4s]), followed

by VR (38.7s [35.7s, 41.9s]), and 2D was the slowest (39.9s [37.0s, 42.8s]). The upper-

bound non-inferiority TOST indicated that Physical was not significantly slower than

VR (t(71) = −12.84, p < 0.001) and Physical was not significantly slower than 2D

(t(71) = −14.51, p < 0.001). This result supports hypothesis H1 for the Compare task.

4https://aaroncaldwell.us/TOSTERpkg/
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For the Range task, Physical had time (42.0s [39.7s, 44.3s]), 2D was (43.1s [41.3s,

44.9s]), and VR was (54.5s [51.8s, 57.3s]). The upper-bound non-inferiority TOST

indicated that Physical was not significantly slower than VR (t(71) = −18.71, p < 0.001)

and Physical was not significantly slower than 2D (t(71) = −12.49, p < 0.001). This

result supports hypothesis H1 for the Range task.

Besides the results from the main hypotheses, we report additional important results

for the time measure. First, we consider the effects of VR usage and topographic map

usage prior to this study. A repeated measures ANOVA on time revealed an effect

of VRUsage, but only for the VR modality (F (1, 214) = 7.40, p < 0.01). In VR,

participants who had previously used VR were significantly faster (40.0s [37.1s, 42.9s])

versus those who had not (47.9s [52.2s, 53.6s]). A repeated measures ANOVA on time

also revealed an effect of TopoUsage, but only on the 3D modalities. Participants who

had previously used topographic maps were significantly faster in both 3D modalities

(Physical: 31.6s [29.3s, 33.9s]; VR: 38.7s [35.8s, 41.6s]) versus those who had not

(Physical: 39.2s [34.5s, 43.8s]; VR: 50.4s [45.1s, 55.7s]), but 2D did not see such

differences (have used: 42.0s [39.7s, 44.2s]; have not used: 43.5s [39.0s, 48.0s]).

We also evaluate the time measure with respect to each Dataset shown in Table 6.1.

A repeated measures ANOVA on time detected an effect of Dataset (F (2, 645) =

37.949, p < 0.001). Post-hoc pairwise t-tests revealed significant differences between

all pairs of datasets. Participants performed the fastest with Dataset 3 (33.3s [31.1s,

36.5s]), followed by Dataset 2 (37.7s [36.0s, 39.6s]), with Dataset 1 being the slowest

(46.4s [43.9s, 49.0s]).

Errors

Figure 6.6 (bottom) shows the absolute error results for each task, and Figure 6.7

(middle) shows the relative differences in error between the 2D and VR modalities

compared with the Physical modality, for each task; the shaded boxes for each task

show the non-inferiority equivalence margin of δ = 0.5σ.

For the Advect task, Physical had an average angular error of (27° [19°, 37°]),

compared with 2D (37° [24°, 50°]) and VR (38° [27°, 50°]). The upper-bound non-

inferiority TOST indicated that Physical did not have significantly higher error than VR

(t(71) = −3.40, p < 0.001) and Physical did not have significantly higher error than 2D

(t(71) = −2.09, p < 0.05). This result supports hypothesis H2 for the Advect task.

For the Compare task, 2D had an average incorrect response rate of (8.3%, [1.8%,

14.9%]), Physical was (13.8% [5.7%, 22.0%]), and VR was (18.1% [8.9%, 27.2%]); the

reported CIs are standard 95% CIs because the assumptions of sphericity and compound

symmetry do not hold for Compare error. Additionally, since the Compare error was not
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normally or log-normally distributed, we use a Wilcoxon signed rank TOST instead of a

standard t-test TOST. The upper-bound non-inferiority TOST indicated that Physical

did not have significantly higher error than VR (Z = 504, p < 0.001) and Physical did

not have significantly higher error than 2D (Z = 615, p < 0.001). This result supports

hypothesis H2 for the Compare task.

For the Range task, 2D had the lowest error on average (3.6% [2.4%, 4.0%]),

followed by Physical (6.4% [5.2%, 7.6%]), followed by VR (10.6% [8.7%, 12.4%]). The

upper-bound non-inferiority TOST indicated that Physical did not have significantly

higher error than VR (t(71) = −7.28, p < 0.001). However, lower-bound non-inferiority

test indicated that 2D had significantly lower errors than Physical (t(71) = 8.88, p <

0.001). This result does not hypothesis H2 for the Range task.

A repeated measures ANOVA on error did not find an effect of VRUsage or TopoUsage,

nor did it find an effect of Dataset.

Confidence

Figure 6.6 (top right) shows the absolute confidence results for each task, and Figure 6.7

(bottom) shows the relative differences in confidence between the 2D and VR modalities

compared with the Physical modality, for each task; the shaded boxes for each task show

the non-inferiority equivalence margin of δ = 0.5σ.

For the confidence analysis, we take an “intervalist” interpretation to analyzing the

5-point Likert scale data, thus we treat the measure as continuous [South et al., 2022].

This enables us to use the arithmetic mean to perform analyses, which is considered a

truer descriptor than the median when summarizing Likert scale data [Lewis, 1993].

For the Advect task, participants were most confident in 3D, with Physical and VR

being equal (Physical: 3.58 [3.17, 4.00]; VR: 3.58 [3.24, 3.93]), and they were least con-

fident in 2D (2.38 [2.03, 2.72]). The lower-bound non-inferiority TOST indicated that

Physical did not have significantly lower confidence than VR (t(23) = 2.22, p < 0.05),

and Physical did not have significantly lower confidence than 2D (t(23) = 5.92, p <

0.001). This result supports hypothesis H3 for the Advect task.

For the Compare task, participants ranked their confidence in Physical (3.96 [3.62,

4.30]), VR was (3.67 [3.31, 4.03]), and 2D was (3.50 [3.22, 3.78]). The lower-bound non-

inferiority TOST indicated that Physical did not have significantly lower confidence than

VR (t(23) = 4.52, p < 0.001), and Physical did not have significantly lower confidence

than 2D (t(23) = 4.42, p < 0.001). This result supports hypothesis H3 for the Compare

task.

For the Range task, participants were most confident in the 2D modality (3.63 [3.26,

3.99]), followed by Physical (3.00 [2.69, 3.31]), followed by VR (2.33 [1.99, 2.67]). The
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Manipulate Touch

Task Strategy Frequency Strategy Frequency

Advect None 71% None 31%
Advect Rotate 4% One Finger 57%
Advect Pick Up 25% Multiple Fingers 12%
Compare None 58% None 7%
Compare Rotate 1% One Finger 19%
Compare Pick Up 40% Multiple Fingers 74%
Range None 39% None 40%
Range Rotate 19% One Finger 36%
Range Pick Up 42% Multiple Fingers 24%

Mean None 56% None 26%
Mean Rotate 8% One Finger 37%
Mean Pick Up 36% Multiple Fingers 37%

Table 6.2: Touch and manipulation in the Physical modality

lower-bound non-inferiority TOST indicated that Physical did not have significantly

lower confidence than VR (t(23) = 4.74, p < 0.001). However, the upper-bound TOST

indicated that 2D had significantly higher confidence than Physical (t(23) = −5.22, p <

0.001). This result does not support hypothesis H3 for the Range task.

Touch and Manipulation

Table 6.2 shows the frequency that participants touched and manipulated the physical-

ization in the Physical modality trials, captured by inspecting the video recordings for

each trial. Starting with manipulation, we note that during a majority of trials, partici-

pants did not opt to pick up or rotate the physicalization on its base, though it varies by

task. For the Range task, participants picked up the physicalization in just under half

the trials, and rotated it in just under a quarter. For the Compare task, the behavior

was split between no manipulation and picking up the physicalization. For the Advect

task, just under a quarter of participants picked up the physicalization while the rest left

it on its base.

With touch, we observe that during three quarters of the trials, participants chose

to touch the physicalization with at least one finger (Compare = 93%, Advect = 69%,

Range = 63%; mean = 75%). Breaking it down further, most participants used one

finger for the Advect task and multiple fingers for the Compare task, while the touch

strategies for the Range task were more mixed. Every participant touched the physi-

calization during at least one trial. Besides the touch usage in the Physical modality,

we note that some participants also used touch as a strategy in 2D; during 7% of trials
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2D VR Physical

color 10 manipulate 14 physicalization 14
contour lines 8 virtual visualization 13 manipulate 9
manipulate 8 input devices 2 touch 9
2D visualization 6 legend 2 legend 3
labels 4 lighting 2 confirmation 1
cursor 3 bounds 1 lighting 1
background 1 clipping 1 points 1

cursor 1

sum 40 sum 36 sum 38

Table 6.3: Positive factors identified by participants.

2D VR Physical

slow 13 legend 15 legend 10
labels 8 manipulate 13 labels 2
manipulate 8 tracking 3 lack of resources 2
contour lines 6 input devices 2 solid 2
crosshairs 2 virtual visualization 2 color 1
color 1 clipping 1 size 1

sum 38 sum 36 sum 18

Table 6.4: Negative factors identified by participants.

participants used multiple fingers and 10% of trials they used a single finger.

6.4.2 Qualitative Feedback

To better understand the participants’ user experience during the study, we analyzed

the qualitative subjective answers to free-response questions. The open-form text from

participants’ feedback responses was coded using the questions we asked as a code-

book, including positive and negative factors, and strategies participants used (see Sec-

tion 6.3.5). Two coders independently distilled the responses from each question; they

were not given any information about responses beyond the question text to minimize

bias in the coding. The coded responses were then normalized for meaning; for exam-

ple, “lines” would be normalized to “contour lines”, and “feel” would be normalized to

“touch”.
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2D VR Physical

color then contour lines 6 manipulate 13 touch 11
contour lines 3 change view 7 change view 9
cursor 3 align legend 4 manipulate 7
trace path 3 clipping 1 paired comparison 2
color 2 cursor 1 trace path 2
count contour lines 2 lighting 1 align legend 1
manipulate 2 picture ball rolling 1 connect points 1
map context 2 recheck answers 1 legend 1
paired comparison 2 trace path 1 lighting 1
touch 2 picture ball rolling 1
labels 1 picture water flowing 1
picture ball rolling 1
shading 1

Table 6.5: Strategies participants used during the study.

Positive and Negative Factors

Table 6.3 shows the coded positive factors reported by participants in their qualitative

feedback. For all three modalities, participants frequently mentioned both the fact that

they could manipulate every visualization, and the most salient components of each

modality. In both 3D modalities, the visualization (virtual or physical) was mentioned

by a majority of participants, as were the color and contour lines in 2D. Nine participants

also mentioned touch as a positive factor while using the Physical modality. Overall,

there were an approximately equal amount of positive factors for each modality.

Table 6.4 shows the coded negative factors reported by participants in their qualita-

tive feedback. For the 2D modality, a majority of participants mentioned that the using

the mouse to manipulate the viewpoint was slow, and that labels were sometimes hard

to read. In VR, a majority of participants found it difficult to manipulate the virtual data

object with the spatial input devices, and three participants mentioned some tracking

issues. For the Physical modality, two participants mentioned the lack of labels and the

fact that the physical data object was solid as negative factors. In both 3D modalities,

the most common negative factor was the legend, with 15 participants mentioning it

for VR and 10 for Physical. Finally, participants identified fewer than half the negative

factors in Physical that they did in either digital modality

Strategies

Table 6.5 shows the coded strategies reported by participants in their qualitative feed-

back. Participants in all three modalities expressed a variety of strategies. Strategies in
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2D were the most varied, with some participants first looking at color, then at contour

lines, while others only looked at the contour lines, or used a cursor or touch to mark

points. In both 3D modalities, manipulate was a predominant strategy, as was changing

view to look around the visualization. For the Physical modality, eleven participants

mentioned touch as an important strategy to completing the tasks, and in VR, four

explicitly mentioned they needed to align legend.

6.5 Discussion

In this section, we discuss the results of the study in the context of both the quantitative

and qualitative feedback, and we compare the results of this study with prior studies

from the literature.

6.5.1 Interpretation of Results

Overall, the results for the time measures support hypothesis H1: in all tasks, the

Physical modality was at least as fast the as other modalities. Support for hypothesis H2

is divided by task: the Physical modality shows errors equal or less than other modalities

in the Advect and Compare tasks, and shows higher errors than 2D in the Range task.

Similarly for hypothesis H3, participants report similar or higher confidence ratings for

Physical versus other modalities in the Advect and Compare tasks, and report lower

confidence in Physical than 2D for the Range task. The rest of this section discusses

the results and implications for each hypothesis.

Time and Errors

For the Advect task, the Physical modality was the fastest, without incurring higher er-

rors. Indeed, there was not an observable speed/accuracy trade-off between modalities

for this task; even though participants took longer in 2D and VR modalities, their mean

error was actually higher than in the Physical modality. Returning to the motivation

for using physical data objects, we attribute the success of the Physical modality for

the Advect task to three main factors: the embodied role of touch on the physical data

object, the haptic perception of the data, and the real-world depth perception that a

physical object provides. We suspect these advantages are critical to the higher perfor-

mance of the Physical modality, particularly for this task which requires participants to

develop a deep understanding of not only the surface of the elevation data but also its

gradient.

For the Compare task, the Physical modality was faster than the other two modal-

ities. We also observe that participants committed the least errors in 2D; there is a
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noticeable speed/accuracy trade-off for this task. From the qualitative feedback and

video recordings, we observed that people used very different strategies for the 2D and

the Physical modalities; in 2D, nine participants reported that they counted individ-

ual contour lines, whereas in the Physical multiple participants reported that they used

their finger to mark points, and make quick pairwise comparisons between points’ eleva-

tions. These varied strategies have also been reported in the literature; physicalizations,

particularly those that are hand-scale and able to be picked up, tend to lend them-

selves naturally to making quick judgments [López Garćıa and Hornecker, 2021]. So,

we suspect this difference in strategies afforded by each modality was at least partially

responsible for the speed/accuracy trade-off seen in the Compare task.

For the Range task, the Physical and 2D modalities had about the same time on

average, but 2D had fewer errors; VR had both higher time and more errors for this task.

In both the Physical and the VR modalities, participants were required to look up the

numeric elevation on the separate legend, which participants found to be both cognitively

demanding and inaccurate. In fact, the legend was the most common negative factor

for both 3D modalities. This was not an issue in 2D, where the numeric elevations were

provided as labeled contour lines. Like the Compare task, we suspect these differences

in strategies had a major contribution to the time and error results for the Range task,

and they are discussed in further detail in Section 6.6.

Looking at the time results further, we also notice that participants who had previous

VRUsage and TopoUsage had different performance under some circumstances. Specif-

ically, participants who had used VR previously had faster times in VR, and participants

who had used topographic maps previously had faster times in both 3D modalities. The

correlation between faster VR times and previous VR usage is understandable; VR usage

among the general population is not yet ubiquitous, and performing tasks in VR does

have a learning curve. We are, however, surprised by the correlation between previous

topographic map usage and speed in the 3D modalities; we had expected to see the

speed increase in the 2D modality instead. One possible explanation for this is that the

topographic map usage skill transfers to a more general understanding of elevation data

representations in any modality. We note that while effects of TopoUsage and VRUsage

were found on the time, no such effects were found on error measure.

Finally, we see that participants perform faster with some datasets than with others.

This is evident because the data originate from real elevation sources; thus we expect to

see some variability between datasets. In addition to the elevation range and percentage

of points that are touchable in the dataset (shown in Table 6.1), the random distribution

of targets likely also plays a role in this. Because it is real data, some circle targets are

inherently more difficult than others for the Advect and Range tasks, and some triplets of
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points for the Compare task are also more difficult than others (i.e., if two far away points

have similar elevations). Though there are effects of Dataset on the time measure, no

such effects were found on the error measures.

Confidence

Overall, participants’ confidence ratings were fairly similar between modalities across the

board, with two notable exceptions.

For the Advect task, participants were clearly most confident in 3D; the VR and

Physical modalities both showed higher confidence rating than the 2D modality. From

the qualitative feedback, we understand that in 2D many participants had difficulty in-

terpreting the contour lines to follow the path downhill. While a majority of participants

had prior experience with topographic maps, this was still a major source of trouble,

and thus was a likely contributing factor to decreased confidence in 2D for the Advect

task. We also attribute the differences in participants’ confidence in 2D vs. 3D to

the perceptual advantages that 3D visualizations provide when solving 3D tasks; these

advantages are discussed further in Section 6.5.3.

For the Range task, participants were most confident in the 2D modality. In 2D,

many participants used the strategy of counting contour lines and then looking up the

numeric elevation, and participants preferred the certainty of the labeled contour lines

to the uncertainty of performing a lookup based on the legend for the VR and Physical

modalities. This difference in strategies was corroborated by the qualitative feedback,

and likely influenced participants’ confidence in the 2D modality for the Range task. We

attribute these difference in confidence primarily to the visualization design of the 2D

modality; this is discussed further in Section 6.6.

Comparison with Non-Spatial Studies

In comparison with prior studies comparing physical and digital modalities with non-

spatial data, we observe a key similarity that this study echos the key results from those

previous studies: the Physical modality is at least as fast as digital modalities with

comparable visualization design and interaction. [Jansen et al., 2013, Danyluk et al.,

2020].

We observe that somewhat surprisingly, the amount of errors committed on this

study with spatial data was generally similar to the prior studies with non-spatial data;

we use the Range and Compare task as points of comparison since they are common

among the prior studies and our study. Both Jansen et al. and Danyluk et al. reported

error rates for the Range task between 2% - 9% and Compare task between 10% - 14%,

and opted not to report error difference between modalities or perform analysis on the
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errors. We saw errors between 3% - 11% for the Range task and 8% - 16% for the

Compare task, roughly in the same range as the previous studies. This is interesting

because with the spatial data in this study, participants were required to locate points

and areas on a continuous surface as opposed to performing lookups based on discrete

data.

Though we kept the Compare and Range tasks as similar as possible to prior studies

(i.e., number of points on the grid), we see differences in the average time it took

participants to complete the Compare and Range tasks in the Physical modality. For

the Range task, Jansen et al. reported an average time of about 23 seconds, Danyluk et

al. reported an average time of about 33 seconds, whereas ours was about 46 seconds.

We attribute this study’s much higher average time to the legend lookups necessary

for the Physical and VR modalities. For the Compare task, Jansen et al. reported an

average time of about 41 seconds, Danyluk et al. reported an average time of about 52

seconds, whereas ours was only about 36 seconds. We expect to see differences like this

because some tasks are inherently different with spatial data; for the tasks in our study,

participants were required to complete the tasks over continuously-sampled points and

areas, rather than discrete points and areas used by prior studies.

6.5.2 Implications of Physicalization on Spatial Data Analysis

Beyond the main hypotheses, we also investigate the role of touch and the benefits and

drawbacks of using data physicalizations for spatial data analysis tasks. We find that,

unsurprisingly, the benefits of touch in performing data analysis tasks identified by prior

studies are also present in this study on spatial data, perhaps even to a larger degree.

Role of Touch

From the results and feedback, we conclude that haptic perception of data can be espe-

cially helpful when interpreting the minute surface differences apparent in continuously

sampled spatial data like those used in this study. While it is well-known that using the

haptic channel enables a rich transfer of information between the data and the user,

including material properties like roughness and friction [Hornecker et al., 2023], haptic

perception is generally less accurate than visual perception for interpreting unfamiliar

objects and data, and that using haptic perception alone forces a user to interpret data

sequentially over time [McCormack et al., 2018]. Even so, a majority of participants

mentioned that touch and manipulation were strategies they used to solve the spatial

data analysis tasks. In fact, multiple participants reported strategies that relied strongly

on touch: P8 stated their strategy was “...to rely on my sense of touch to find the

lowest and highest point and trace the path down the hill”, P11 stated that they would
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“[p]hysically touch points of interest when eyes could not tell the difference”, and P20

“placed my fingers on the model and compared the touch sensation when required”.

Thus, touch plays a critical role in the comprehensibility and embodiment of physical-

izations, especially for spatial data.

Participants touched the physicalization during more than 90% of Compare task

trials, over two thirds of Advect trials, and over half of Range trials, and every participant

touched the physicalization at least once during the study. So, even for the participants

that didn’t explicitly mention touch as a strategy, most implicitly touched the object

to help them solve the tasks. Returning to the work on embodied cognition, one view

is that physical objects help us to offload cognitive work into the environment [Wilson,

2002] rather than storing every bit of information in memory; this has been shown as

an effective strategy for some visualization tasks [Jansen et al., 2013]. This offloading

behavior was observed in a majority of trials, with participants using their fingers to mark

points and “save” their locations, to trace paths downhill, and to draw lines between

multiple points across the spatial data physicalization. We conclude that cognitive

offloading and the affordance for touch that physical objects have [Klatzky and Peck,

2012] were the predominant factors leading most participants to touch the object, to

find the most advantageous strategy to reduce their time and errors in solving the spatial

data analysis tasks.

Though touch played an essential role in solving tasks, in the Physical modality

most participants did not actually manipulate the physicalization by picking it up or

rotating it; they were content to leave it on its base. One explanation for this is that

participants were able to obtain a sufficient 3D understanding of the surface by the

true, unambiguous depth cues provided by the physical object; it is also possible that

the embodied interactions and haptic perception enabled by touching the object enabled

most participants to complete the tasks to a satisfactory level (without moving it). We

also suspect that the weight of the physicalizations may have been a contributing factor;

though this wasn’t reported in any of the qualitative feedback, participants may have felt

fatigued by picking up the data object. Reviewing the time and error results with this in

mind, we observe that this is another key result echoing earlier studies: the advantages

of physicalization do not necessarily lie in its affordance for direct manipulation, rather

it is the touch itself that matters.

Besides touch in the Physical modality, we notice that during almost a quarter

of trials participants also touched the screen for the 2D modality (especially for the

Compare task); rather than using the pan and zoom interactions with the mouse, some

participants preferred to mark points with their fingers and then make comparisons.

To illustrate this 2D strategy further, P15 reported that “[f]or the compare task, I
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would locate the crosshairs of each of the three specified circles. I would then place

a finger on each of those points so that it was easier to identify and thus compare

the specified circles. After locating these circles, I similarly followed the process of

looking at the color gradients, then continued to narrow down my answer by looking

at the labelled contour lines.” We note that the error for the 2D condition was the

lowest in the Compare task, and we attribute at least some of this to participants using

their embodied reference frame to offload some cognitive work into the environment.

Additionally, multiple participants mentioned marking points with the 3D cursors in the

VR modality, but since the virtual visualization was “popping out” of the screen, it was

not possible to touch any part of the visualization.

Benefits and Drawbacks of Physicalization on Task Completion

The results from this study substantiate the theorized benefits that physicalizations

provide, from true depth perception to bringing data into our embodied reference frame.

A majority of participants mentioned the importance of the physicalization itself as a

positive factor for their spatial data analysis due to the ability to physically touch and

move the data object; P8 stated that “[t]he ability to physically manipulate and feel the

model helped in these tasks”, P24 stated “[b]eing able to hold and move the map in

3D space helped be line up the elevations with the legend”, and P5 mentioned that the

physicalization helped specifically for the Advect task: “Having a tangible object to touch

made the tracing/intersection task easier”. Beyond the direct touch advantages, others

reported that the visual perception and manipulation of the physical object assisted P3;

“I can manipulate the physical object easily and compare [its] height when looking at

the side of it”, P6 saying that “...looking at the point from three views (front, left and

top) helped identify the altitude”, and P17 noting that “having the physical model let

me see the perspective and angle exactly how [I] wanted”.

Participants also brought up some disadvantages to the Physical modality, namely

its lack of interactivity and labeling. P5 mentioned that the “lack of topography labels”

were problematic, and P15 similarly stated that it was “a definite drawback to not have

the contour line labels”. We also note that multiple participants used the strategy of

“clipping” the legend through the virtual visualization in VR, and were frustrated that

the Physical legend could not behave similarly because it was solid. Participants also

thought that interactive annotation tools would be helpful for all three modalities, with

P6 stating that “it would be great if there could be some pin points when clicking

on the selected cross marks”. The drawbacks of the Physical modality in terms of

its interactivity are well-known in the literature [Djavaherpour et al., 2021], and are

discussed in further detail in Section 6.6.
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Finally, we observe that the Physical modality had higher ratio of positive feedback

to negative feedback than either of the digital modalities. For 2D, participants identified

40 positive and 38 negative (ratio 1.05:1), for VR, there were 36 positive and 36 negative

(ratio 1:1), and for Physical there were 38 positive and 18 negative (ratio 2.1:1). This

result underscores the benefits that physicalizations provide in terms of their immediate

relatability: since we interact with physical objects in the real world, we are intimately

familiar with their affordances for touch and manipulation.

6.5.3 General Discussion

Thus far, the discussion has centered on the Physical modality and the implicit inter-

actions it enables through touch and embodiment. However, there are other important

results not directly tied to physicalizations, and these are discussed in the following

paragraphs.

Unsurprisingly, the results indicate that 3D visualizations perform better than 2D dis-

plays for tasks that require a deep understanding of the 3D spatial structure of a dataset

or object. This has been demonstrated numerous times in the literature, including nav-

igation and positioning tasks [Tory et al., 2006], and spatial memory tasks [Cockburn

and McKenzie, 2002]. In our results, the advantages of 3D are especially apparent in

the Advect task; participants took less time in both 3D modalities than in 2D, and they

reported higher confidence. This task required participants to form a mental model not

only for the surface geometry but also the gradient of the geometry in order to solve the

task; thus, 3D representations of the inherently 3D surface were helpful to completing

this task.

Qualitative feedback from a majority of participants indicated that they found the

2D visualization slow, with P5 reporting that “[i]t took some time for it to re-render the

map whenever I changed zoom levels or panned the viewport...”, and P24 remarking

that “[s]ometimes the Letters and Numbers on the sides of the grids didn’t render/load

right away so I would have to wait a few seconds for those to pop up before I could

figure out where to go on the map.” This was not an intentional design decision and

went unnoticed during testing and the pilot studies, so we conducted an investigation

into the matter after the study was complete. We found from the video footage that

participants panned and zoomed the 2D visualization about 5 times on average per trial,

and using a screen recording we found that each refresh took on average 300ms. This

equates to adding 1.5 seconds of loading on average per trial in the 2D modality.
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6.6 Limitations and Future Work

6.6.1 Limitations

While this study introduces the first evaluation comparing spatial data physicalizations

with digital visualizations, we note that it has some limitations. To begin, despite careful

attention to the visual channels and usage of best practices for a GIS visualization, the

2D visualization design may have caused a confound. The contour lines in the 2D

modality had 5 sub-contours, which enabled participants to effectively determine the

elevations of points within about 40 meters, whereas the legends provided in both 3D

modalities only provided steps of 200 meters. Additionally, both a colormap and contour

lines were used in the 2D modality, enabling participants to use color to find high and

low points. To avoid this confound, it would likely be better to use a hill shade instead

of a colormap [Slocum et al., 2022] and to provide contour lines in the 3D modalities,

not just in 2D. We expect that this design contributed to the reduced error rate in 2D,

especially in the Range and Compare tasks.

Another potential factor that most likely contributed to the performance differences

in the Range task was each modality’s design for finding the numeric elevation at a given

point on the visualization. For the 2D modality, numeric elevation labels were provided

on the contour lines, which enabled participants to directly look up the minimum and

maximum elevation. Conversely, for both 3D modalities, participants were required

to look up elevations via a legend, a multi-step process that takes more time than a

single numeric lookup on the 2D map. This was especially prevalent in VR because

participants were not only required to look up the elevation but also needed to manually

align the legend with the virtual visualization. Thus, for the Range task where these

numeric lookups were necessary, we expect that the design for finding numeric elevations

contributed to both reduced time and reduced error for the 2D modality and the increased

time and error in both 3D modalities. So, while we can say for certain the Physical

modality performs faster and with lower errors than digital modalities on the Advect

task, we expect that we would see different results for the Compare and Range tasks if

the legend and contour lines design considerations were addressed.

Following up on the qualitative results and feedback from participants, we reflect

that there are likely further benefits to the Physical modality that our study was not able

to capture. First, self-reported subjective measures like confidence are often questioned

as a valid measure for a visualization’s effectiveness; this is reflected in the study’s re-

sults where confidence ratings were substantially the same except in two cases. Second,

prior literature indicates that when investigating the value of a visualization beyond its

performance and accuracy metrics, alternative measures may be required [Saket et al.,
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2016]. For example, though our qualitative feedback questionnaire at the end of each

block provided some insight into participants’ positive and negative sentiments about

each modality and strategies they used, other methods like reaction cards [Merčun,

2014], or semi-structured interviews [Carpendale, 2008] with more space for open-ended

responses may have been more effective. Finally, we note that evaluating physicaliza-

tions with respect to digital visualizations presents a unique set of opportunities and

challenges. The perceptual, emotional, and embodied benefits of physicalizations are

clear from the literature [Hornecker et al., 2023], but methods for effectively comparing

these aspects of physicalizations with digital visualizations are less clear. For instance,

information on individuals’ differences in the “need for touch” [Peck and Childers, 2003]

might be valuable to collect during recruitment, and further methods of modeling and

evaluating emotional engagement with data are needed [Wang et al., 2019].

6.6.2 Future Work

In addition to the limitations of the current study, we highlight some areas where future

work is needed.

The DEM data used in this study are a common type of spatial data and have

been a target of physicalization for many years (e.g., [Schmitz, 2004, Tateosian et al.,

2010, Millar et al., 2018]). However, these data – which are 2.5D and only encode one

variable – only scratch the surface of the data that is possible and necessary for today’s

scientific sensemaking processes. There are even more interesting research questions and

visualization tasks that one can ask about 3D multivariate volumetric spatial data, such

as finding an area of high concentration in a particular variable, tracing the path a par-

ticle would take in a flow field, and selecting cutting planes in a volume to analyze data

across two axes, and other classic examples of scientific visualization queries [Nielson

et al., 1997]. Scientific data also frequently encompass multiple points in time. Time-

varying data can be prohibitive to physicalize if the objective is to display time steps

with animation. However, other approaches to time-varying visualization exist that can

be more effective in some situations (e.g., interactive combined plots [Schroeder et al.,

2012], summary statistics combined with cutting planes [Schroeder et al., 2014], and

motion tracers [Keefe et al., 2009]). These alternative approaches have even been

applied to physicalizations, such as ChronoFab [Kazi et al., 2016]. Despite the alter-

native approaches, animation remains an important feature to support for time-varying

visualizations.

Usually, this animation is supported by digital interactivity. In this study we inten-

tionally limited the interactivity to basic view manipulation operations to minimize the

differences between modalities. However, we note that interactivity like zoom, filter, and
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details-on-demand (i.e., the information-seeking mantra [Shneiderman, 1996]) is a pow-

erful and necessary tool for exploring data and finding the trends and relationships essen-

tial to comprehending the physical phenomena studied by today’s scientific sensemaking

processes. Multiple participants expressed a desire for such additional interactivity with

the data (e.g., labels, filtering, and annotation), and adding these interactive elements

has been considered best practice for making a visualization more comprehensible for

decades [Upson et al., 1989]. Given the other work in this dissertation like Chapter 5’s

approach to touch sensing and digital-physical interactivity that enables multi-touch

queries into 3D volumetric time-varying multivariate data, we see a future where such

interactivity is inherent to all visualization modalities including data physicalizations.

Thus, a critical step for future work is to create, apply, and evaluate interactive data

exploration tools for both physical and digital visualizations, and to investigate the role

that the embodied interactions enabled by physical data representations might have on

the perceptibility, comprehensibility, and relatability of 3D multivariate spatial data.

6.7 Conclusion

This chapter introduced the first user study evaluation comparing the effectiveness of

data physicalizations with digital visualizations for spatial data analysis tasks. The study

reimagined prior visualization evaluation designs from the physicalization and scientific

visualization literature to evaluate spatial data physicalizations compared with digital

2D GIS visualizations and VR visualizations. Time and error results were reported in

addition to subjective measures of confidence and participant qualitative feedback for

each visualization modality. The results of the study suggest that using data physicaliza-

tions for some spatial data analysis tasks can lead to substantial performance benefits,

and that using a data physicalization provides benefits beyond performance like direct

touch on the data, haptic perception, and leveraging our own human embodied refer-

ence frame to make data more comprehensible. Given these results, we believe that data

physicalizations are worth considering as a means for spatial data analysis.
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7.1 Review of Contributions Towards Thesis Statement

In this chapter, I review the contributions of this dissertation towards the thesis state-

ment, and identify important future research directions for the visualization and physi-

calization research communities.

The thesis statement of this dissertation is:

New approaches to extended reality visualization that encode data using

physical rendering processes enable better comprehension of and more

embodied relationships with spatial data by leveraging the perceptual benefits

and tactile interactions that are missing from current digital visualizations.

Each chapter has contributed a piece towards the greater whole of making extended

reality data visualizations more graspable – both more comprehensible, and more em-

bodied – using physical rendering processes.

Chapter 3 presented a systematic design exploration of the first 3D printed

visualizations encoding scalar data as glyphs on a 3D surface. The work consisted

of a series of design experiments towards a first-of-its-kind data physicalization, which

combined a physical surface geometry with a glyph-based scalar data overlay. This work

demonstrates an important addition to data physicalization research for two reasons.

First, physicalizations typically are created from non-spatial data like statistical data,

and thus do not transfer well to the needs of current scientific sensemaking processes.

Second, of the data physicalizations that do represent spatial data, they only rarely

include more than just the surface data. Our work addresses these concerns by creat-

ing a design for glyph-based spatial data physicalizations informed by current scientific

visualization techniques and data physicalization guidelines. This work uses physical

rendering processes to bring these multivariate visualizations into the physical world to

provide more embodied interactions with the data.

Chapter 4 presented a software architecture and user interface enabling the

design of multivariate 3D spatial data visualizations using handcrafted physical

media. This work introduced a new way of interpreting physical rendering processes

by using elements from the physical world to encode data in digital visualizations. The

architecture and design user interface contributed by this chapter are significant to

visualization research because they make it possible to engage the expertise of artists

to effectively design multivariate 3D spatial data visualizations. With artists in the loop

for visualization design, visualizations are made not only more expressive and engaging

by leveraging the embodiment of physical objects, but can also depict more data in a
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comprehensible manner, a key need of current scientific sensemaking processes.

Chapter 5 presented a new approach to querying 3D spatial data using multi-

touch input directly on a data physicalization. This work developed a new approach

to using multi-touch input on an augmented data physicalization to make real-time

queries into multivariate 3D spatial datasets. This work is significant to visualization

and data physicalization research because it presents a new approach to interactive multi-

touch sensing on a physicalization by first segmenting the physicalization into columns,

then using the columns to transfer the force of the user’s touch down to a touch sensitive

tablet. While this work is still in its early stages, its performance evaluation is promising

and domain science collaborators are excited about its potential to help them better

comprehend their data through the embodied, tactile interactions enabled by making

data more graspable.

Finally, Chapter 6 presented an empirical study on the effectiveness of data

physicalizations for spatial data analysis tasks when compared with state-of-the-

art virtual reality and 2D geographic information science visualizations. This

research is significant because it is the first example of a user study comparing visu-

alization modalities for spatial data analysis tasks. The design itself is novel, taking

inspiration from both prior data physicalization studies and scientific visualization stud-

ies. In the study results, we find that unsurprisingly, data physicalizations outperform

digital visualizations in many cases, and embodied interactions such as touching the

physicalization are likely a contributing factor to this.

In summary, each of these individual explorations on physical rendering processes

have the potential to make data more graspable: Reinterpreting scientific visualization

and data physicalization design guidelines makes the types of data used by today’s

scientific sensemaking processes more graspable by bringing it into the physical world.

Reimagining the design of digital 3D multivariate visualizations to leverage physical ele-

ments from the real world has the potential to make them more expressive and engaging,

and enables a new level of embodiment for these digital visualizations. Reconstructing

data physicalizations to support the digital, interactive queries necessary for today’s sci-

entific sensemaking processes makes data physicalizations more comprehensible. And,

reassessing the strategies for evaluating data physicalizations can lead to deeper, more

meaningful results when comparing physicalizations with traditional digital visualiza-

tions. Investigating the new ways that physical rendering processes can be used to make

data more graspable is the motivation behind each of these works that contribute to-

wards the greater whole of making data more comprehensible and more embodied for

the benefit of all.
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7.2 Future Research

Beyond the work in this dissertation, I identify three key tracks for future research

regarding the use of data physicalizations for scientific sensemaking processes.

7.2.1 Track 1: Design and Perception of Data Physicalizations

While a few individual examples of evaluations centered on the design decisions for

physicalizations exist, there is still a lack of comprehensive evaluation across the data

physicalization community. Specifically, as identified by a formative article on data

physicalization, more evaluation on the design and perception of data physicalizations

is needed [Jansen et al., 2015]. Interesting research questions along this track might

include:

1. What are the most effective physical marks to use to encode data for various visual

and haptic channels?

2. How does the size of a spatial data physicalization affect the perception of the

data?

3. How well do current assumptions underlying many visualization designs transfer

to physicalizations?

4. How might the additional benefits that physicalization provides (e.g., diverse ma-

terial properties, haptic perception, embodied interactions, and emotional connec-

tion) be evaluated?

7.2.2 Track 2: Integrating Physicalizations to Scientific Sensemaking

Processes

As described earlier in this dissertation, the data physicalization community has been

largely focused on non-spatial data. However, these data are not as applicable to sci-

entific sensemaking processes, and though our work in Chapter 6 provides a first step

in this direction, additional prototypes and experiments are needed that establish the

utility of data physicalizations for scientific sensemaking processes. Promising research

objectives along this track include:

1. Extending current digital fabrication technologies for use in scientific workflows;

specifically, multi-color and multi-material manufacturing to facilitate the physi-

calization of multivariate and high dimensional data.
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2. Conducting further experiments on the most effective ways to depict multivariate

spatial data in a physical modality; for example, color, glyphs, physical texture,

softness, squishiness, or tensile strength.

3. Researching new domain science application areas and seeking out collaborations

that would benefit from physicalizing data.

7.2.3 Track 3: Adding Interactivity to Physicalizations

Another consideration identified by this dissertation and others (e.g., [Jansen et al.,

2015, Djavaherpour et al., 2021]) is the current lack of interactivity in data physicaliza-

tions; this is necessary to support current scientific sensemaking processes which require

quick changes and feedback to data queries and even steering a simulation while it’s run-

ning. One approach to this is “augmented” data physicalizations like the one described

in Chapter 5, but they currently are limited; they generally give strong preference to

the digital visualization (e.g., augmented reality scatter plots [Bach et al., 2018]), or a

preference to the physical at the expense of interactivity (e.g., [Khot et al., 2020]). Next-

generation augmented physicalizations will push the boundaries between the digital and

physical world, striving for a seamless data experience providing a “best-of-both-worlds”

between digital interactivity and physical embodiment. Future research to enable such

augmented physicalizations includes:

1. Developing new tracking and sensing technologies for interacting with data phys-

icalizations in rich ways (e.g., gesture, multi-touch, voice input).

2. Comparing the performance of interactive visualizations across data physicaliza-

tions and digital visualization modalities.

3. Reconciling current research into active, robotically actuated data physicalizations

with current scientific sensemaking processes.

4. Examining the diverse roles physicalizations play in sensemaking processes (e.g.,

a primary data object of interest, a contextual display, or a tangible interface to

make queries into the data).

7.3 General Conclusions

The work presented in this dissertation explores how physical rendering processes can

make extended reality visualizations more graspable.

Towards the comprehensibility dimension of graspability, I contribute the first study

comparing the effectiveness of data physicalizations for spatial data analysis tasks. From
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the results of this study, I conclude that data representations created through physical

rendering processes can not only perform faster with fewer errors than their digital

counterparts for certain spatial data analysis tasks, but the act of touch on these phys-

icalizations is valuable for its haptic perceptual benefits and the embodied interactions

it provides. I also contribute a new approach to enabling spatial data queries neces-

sary for today’s scientific sensemaking processes, by combining multi-touch sensing on

a data physicalization with immersive augmented reality. From these explorations on

interactive querying and the comprehensibility benefits of physicalization shown by the

study, I conclude that there is significant potential for data physicalizations with digital

interactivity to be used in scientific sensemaking processes, especially in terms of the

possibilities for collaboration and engagement that they provide.

Towards the embodiment dimension of graspability, I contribute multiple examples

of data physicalizations representative of the 3D multivariate spatial data necessitated

by today’s scientific sensemaking processes, including a methodical exploration on the

design of data physicalizations encoding 3D geometry and scalar variables as glyphs

on 3D printed surfaces. Additionally, I contribute a visualization design user interface

and architecture that enables visualization designers to use physical artifacts from the

real world to encode variables in a 3D multivariate visualization. In this work, I con-

clude that because of the physical origin of the data encodings, some of the emotional,

relatable, and embodied benefits of physical data representations are present through

imagined touch, even though the these results are displayed in a digital extended reality

visualization.

In conclusion, extended reality data visualizations created through physical sense-

making processes convey a range of information through their geometric and material

properties, and their capacity to support tactile exploration, haptic perception, and

embodied interactions enables us to develop a better comprehension of the universe.

Ultimately, the work presented in this dissertation anticipates the future of extended

reality visualizations where the boundaries between the digital and physical are blurred:

where scientists can directly touch a data physicalization to make queries into their 3D

multivariate spatial datasets, and query results are displayed as digital extended reality

visualizations blended with the physicalization; where artists collaborate with scientists

to make the most comprehensible and engaging visualizations using materials directly

from their studios; and where the benefits of both highly interactive digital visualizations

and embodied physical visualizations are shared by all.
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