
Palpable Visualizations: Techniques for Creatively
Designing Discernible and Accessible Visualizations

Grounded in the Physical World

A DISSERTATION

SUBMITTED TO THE FACULTY OF THE GRADUATE SCHOOL

OF THE UNIVERSITY OF MINNESOTA

BY

Seth Alan Johnson

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

Doctor of Philosophy of Science

Daniel F. Keefe

July, 2020

© Seth Alan Johnson 2020

ALL RIGHTS RESERVED

Acknowledgements

I would like to express my gratitude to the many people who have supported, encour-

aged, and guided me through the work leading to this dissertation. Without all of you,

I neither would nor could have undertaken this endeavor.

A particular joy of researching interdisciplinary collaboration techniques is the rela-

tionships with the interdisciplinary collaborators. Without the teamwork of colleagues

and co-authors such as these, none of the works in this dissertation would exist. First,

I am grateful for the partnership of the staff and researchers at the Earl E. Bakken

Medical Devices Center, particularly Arthur Erdman and Bethany Juhnke. I am also

thankful to the team of architects from MINN LAB, Ross Altheimer, Robert Hunter,

Andrea Johnson, Maura Rockcastle, Marc Swackhamer, Aaron Wittkamper, and Deuk-

Geun Hong for welcoming me into their creative design process for a year and sharing

the most crowded and rainy all-nighter of my academic career. And I am humbled by

the patience and enthusiasm of the domain scientists who have partnered with us to

find new means of exploring their data; in particular, Ashish Singal, Marcos Molina,

Hakizumwami Birali Runesha, Lingyu Meng, Phil Wolfram, and Christophe Lenglet.

Likewise, I am delighted to have spent the last three years working closely with

the students and staff of The University of Texas at Austin and the Texas Advanced

Computing Center, including Andrew Solis, Hannah Simon, Stephanie Zeller, Annie

Bares, and the countless others who were always welcoming when I visited. And to

Greg Abram, thank you for sharing your wisdom, your lunch breaks, and your homes

with me; working with you has been a pleasure and an honor.

I have been especially inspired and encouraged by each of my committee members.

Thank you to Evan Suma Rosenberg and Stephen Guy, for pouring fresh fuel into

my passion for virtual reality and computer graphics through your research and your

i

teaching, and for understanding and supporting my career goals as they evolved. And

Francesca Samsel, thank you for your creativity, your chocolate, and your championing

of everything we built together. I wouldn’t trade our wild adventure for anything; never

stop finding new problems to solve.

I can only begin to express my gratitude for my advisor, Dan Keefe. From inviting

me into research, to patiently working with me to discern my calling, you’ve given

me every opportunity to succeed— and together we discovered what success means for

me. Through your mentorship and compassion for not only me but each of my fellow

students, you have taught me at least as much about grace and leadership as you have

about the study of 3D user interfaces. Your commitment to fostering diversity and

character in your lab has been a blessing to me daily, and for every new student you

welcome into the family I am only further humbled to be a part of it.

To my fellow Ph.D. lab mates Jung, Dan O, Bridger, and Volcano, I can’t imagine

the last six years without having shared deadlines, lunches, stories, hotels, jokes, and

adventures with coworkers who were even more so my friends. To Nikki, Liam, Daniel,

Devin, and all who made 2-203 their home, each of you made coming to work worth-

while on the hardest days. And to Zach Fuenning, David Cook, Michelle Kleckler,

Matt Overby, John Harwell, Moses Adeagbo, Sarah McRoberts, Michael Tetzlaff, Amy

Nippert, and all the rest of my friends who started their doctorates, thanks for your

encouragement, honesty, and solidarity as we struggled together — I’m impressed by

each and every one of you no matter where your paths have taken you.

And I cannot overstate the gift of everyone else who helped my life be about more

than simply school. Every member of my church small group, my incredible housemates,

my D&D and board-gaming groups, GCF book club, the U-Swing club, rock climbing

buddies, Campus Outreach, and all the rest of the friends I’ve made during and before

this program, each of you reminded me that I was never putting my life on hold.

And finally, my gratitude is owed to the people who sowed the seeds that brought

me to this path: Peter Melling, for asking me if I knew what computer science was and

mentoring me while I learned; my Normandale instructors Kevin Lee, Sharon Harvey,

and Jim Polzin, who taught me the puzzle-solving super-power of programming and

urged me onward; and to my parents, who raised me to love learning, explore my

passions, and to know my identity is rooted in something greater than academic success.

ii

For John Carlis

I wish you could have seen my (nearly) one-draft dissertation;

I couldn’t have done it without you.

iii

Abstract

This dissertation investigates techniques to leverage creative processes like sketching,

sculpting, and design iteration to improve the discernibility and accessibility of immer-

sive volumetric data visualizations. Discernible visualizations support a viewer’s ability

to make sense of complexities such as multi-dimensional climate or engineering simu-

lation data. Accessible data visualization both supports the contribution of previously

under-utilized design expertise (i.e. artist-accessible visualization design), and subse-

quently provides access for a broad audience to engage with data through an emphasis

on human connection and support for a wide range of displays. Such visualizations aim

to provide a palpable, data-driven experience for scientists, artists, and the public.

Three early works are presented as a rationale for investigating Palpable Visual-

izations. Bento Box, an immersive visualization system for comparing multiple time-

varying volumetric simulation ensemble instances, demonstrates a current state-of-the-

art for scientific data visualization. Weather Report, an interactive site-specific artwork

visualizing six decades of weather data, takes an in-depth look at what can be accom-

plished when designing data-driven experiences in close collaboration with professional

designers. And Lift-Off, a VR-based modeling program designed for artists, shows how

creative sketching in both the physical and virtual worlds can result in a more accessible

environment for both scientific and design-oriented tasks.

Based on observations from these three prior works, we present Artifact-Based Ren-

dering (ABR), a framework of algorithms and processes that makes it possible to produce

real, data-driven 3D scientific visualizations with a visual language derived entirely from

colors, lines, textures, and forms created using traditional physical media or found in na-

ture. ABR addresses three current needs: (i) designing better visualizations by making

it accessible for non-programmers to rapidly design and critique many alternative data-

to-visual mappings; (ii) expanding the visual vocabulary used in scientific visualizations

to enable discernment of increasingly complex multivariate data; (iii) bringing a more

engaging, natural, and human-relatable handcrafted aesthetic to data visualization to

make the resulting data-driven images more accessible and discernible to the viewer.

Finally, we support the accessibility of visualizations through a data streaming and

remote rendering pipeline, culminating in demonstrations bridging live supercomputer

simulation data with untethered affordable head-mounted AR/VR displays.

iv

Contents

Acknowledgements i

Abstract iv

List of Figures ix

1 Introduction 1

1.1 Art and Science . 2

1.2 Palpable Visualizations . 4

1.3 Thesis Statement . 5

1.4 Contributions . 6

1.5 Overview of this Dissertation . 6

2 Related Work 8

2.1 Making Visualizations Discernible . 8

2.2 Creative Design . 9

2.3 Grounding Visualizations in the Physical World 11

3 Bento Box: Current State-of-the-Art for Immersive SciVis 13

3.1 Introduction . 14

3.2 Related Work . 18

3.2.1 Ensemble Visualization & Comparative Visualization 18

3.2.2 Flow Visualization & Animation 20

3.2.3 Bimanual & 3D User Interfaces 21

3.3 Bento Box: Concept, Visual Layout & Interface 22

v

3.3.1 Concept and Visual Layout . 23

3.3.2 Zooming and Reframing the Widget 24

3.3.3 Creating and Reframing Sub-Volumes 26

3.3.4 Changing the Visualization with the Design Palette 28

3.3.5 Using the Interactive Timeline 29

3.3.6 Rendering Multiple Clipped Volumes 30

3.4 Application and Results . 31

3.4.1 Background: Cardiac Leads in the Right Atrium 31

3.4.2 Sampling and Visualizing Solid Domain Data 32

3.4.3 Sampling and Visualizing Fluid Domain Data 34

3.4.4 Expert User Evaluation and User Feedback 36

3.4.5 Memory Usage and Rendering Performance 39

3.5 Discussion of Limitations and Future Work 40

3.6 Conclusion . 42

4 Studies in Accessible Design 45

4.0.1 Introduction . 46

4.1 Study 1: Weather Report . 47

4.1.1 Weather Report Concept . 48

4.1.2 Visualization and Interaction Design 51

4.1.3 Observations, Surprises, and Reflections 55

4.2 Study 2: Lift-Off for Medicine . 56

4.2.1 Introduction . 56

4.2.2 Related Work . 58

4.2.3 Application 1: Annotation of Medical Data 59

4.2.4 Application 2: Immersive Medical Device Design 64

4.3 Conclusions . 67

4.3.1 Weather Report . 67

4.3.2 Lift-Off . 69

4.4 Conclusion . 70

5 A Theory and Implementation of Artifact-Based Rendering 71

5.1 Introduction . 71

vi

5.2 Related Work . 76

5.2.1 Artistic Techniques and Theories in Visualization 76

5.2.2 Artists and Designers in Visualization 77

5.2.3 Data Physicalization and Human Connection 77

5.2.4 Colormaps and Textures for Visualization 78

5.3 Artifact-Based Rendering for Visualization 80

5.3.1 Stage 1: Creating and Curating Artifacts 81

5.3.2 Stage 2: Digitizing, and Translating Artifacts 81

5.3.3 Stage 3: Data-Visual Mapping and Visualization 87

5.3.4 Data Management . 97

5.4 Discussion . 100

5.4.1 ABR Design Guidelines . 100

5.4.2 Pairing with Perceptual Guidelines 102

5.5 Conclusion . 102

6 Applications and Results of Artifact-Based Rendering 104

6.1 Introduction . 104

6.2 Internal Exploratory Design Study . 105

6.2.1 Methodology . 105

6.2.2 Results and Interpretation . 106

6.3 Applications and Guidelines . 109

6.3.1 Macroalgae in the Gulf of Mexico 109

6.3.2 Brain Microstructure Imaging . 110

6.3.3 Astrophysics . 112

6.3.4 Abstract Data and Future Work 114

6.4 Conclusion . 115

7 Data Streaming and Remote Rendering for 3D Scientific Visualization

116

7.1 Introduction . 116

7.2 Related Work . 119

7.2.1 Remotely Visualizing Large Volumetric Datasets 119

vii

7.2.2 Untethered HMDs, Remote Rendering, and Latency Mitigation

for AR/VR . 121

7.3 Architecture . 124

7.3.1 Motivation and Goals . 124

7.3.2 High-Level Architecture Design 126

7.3.3 High-Level Implementation Approach 127

7.3.4 Remote Rendering Architecture 129

7.3.5 Content Frame Facade Generation 134

7.4 Performance Characterization . 142

7.4.1 Data Streaming Performance Characterization 142

7.4.2 Remote Rendering Performance Characterization 143

7.5 Results . 148

7.5.1 Implementation of Data Streaming 148

7.5.2 Demonstration of Data Streaming 149

7.5.3 Performance & Discussion of Data Streaming 149

7.5.4 Implementation of Remote Rendering 151

7.5.5 Demonstration of Remote Rendering 152

7.5.6 Performance & Discussion of Remote Rendering 155

7.6 Roadmap . 162

7.6.1 Formal Evaluation of Performance Characterizations 162

7.6.2 Further Development . 163

7.7 Conclusion . 166

8 Conclusion 168

8.1 Discussion and Ongoing Work . 168

8.1.1 Artifact Based Rendering . 168

8.1.2 Data Streaming & Remote Rendering 172

8.2 Summary and Review of Primary Contributions 172

8.3 Vision of the Future . 174

8.4 General Conclusions . 174

References 177

viii

List of Figures

3.1 Bento Box is a virtual reality visualization and 3D user interface tech-

nique for comparative analysis of data ensembles, such as this set of

10 time-varying simulations of blood flow around a cardiac lead in the

right atrium of the heart. Each column shows a simulation with differ-

ent parameters, here varying the length and stiffness of the lead. Each

row shows a different view of the data. The top row is a zoomed-out

overview. Users add additional rows of complementary, zoomed-in views

during analysis. 13

3.2 The Bento Box widget arranges multiple views of volume data within a

grid of “cubbies”. 23

3.3 The 3D bimanual user interface is implemented as a finite state machine.

There are four main states, and the system transitions between them

based upon the positioning of the hands (DH = dominant hand, NDH =

non-dominant hand) relative to the cubbies. As illustrated in the blue

portions of the diagram, the actions triggered by the pressing the buttons

on the VR wands held are different depending upon the context provided

by the current state. 26

3.4 A new sub-volume of interest is created with an interactive selection.

From left to right: (a) Assume the starting state is a Bento Box with

two rows. (b) A click within any of the cubbies (in this case, one from

the top row) using the primary button on the DH wand defines a center

point for the selection (the black dot). (c) Dragging defines the size of

the selection box to create. (d) After releasing the button, a new row of

view settings is added to the bottom of the Bento Box. 27

ix

3.5 A visualization design palette is used to change the variable displayed on

each major graphic element of the visualization (in this case: heart walls,

lead, and flow) and to adjust the color map applied to the data. A set

of possible color maps to apply to each variable is loaded during initial-

ization, and the user may change the color map to display in each row

of the Bento Box interactively by dragging one of these colormaps onto

a specific row. Toggle buttons at the bottom of the palette control the

visibility of specific data instances (the columns), labeled with instance

parameters. 28

3.6 Diagram of the simulation scenario with a cardiac lead implanted in the

right atrium of the heart. 32

3.7 Bento Box arranged for a comparison of cardiac leads with three different

stiffness parameters, increasing in stiffness from left to right. The top row

shows an overview of the dataset. The middle two rows highlight stress on

the lead itself, which appears to increase with stiffer leads. The bottom

row zooms in on the attachment point of the lead in the atrial appendix,

showing how in all cases the flow stagnates near the attachment point.

Here, stress on the atrial walls also appears to increase with stiffer leads. 36

3.8 Bento Box arranged for a comparison of different length cardiac leads.

Lead length increases from left to right. At this timestep in the simula-

tion, the longest lead length creates a slower flow (i.e., darker red path

lines). 37

3.9 Rendering frame rates decrease as additional cubbies are added to the dis-

play. Since there are multiple ways to construct a Bento Box (e.g., there

are 4 possible arrangements for 10 cubbies 10 × 1, 5 × 2, 2 × 5, 1 × 10),

these results are for a systematic sampling of possible configurations. The

trend line is a logarithmic fit (R2 = 0.76). 40

4.1 Two immersive scientific visualization projects with artist-oriented design

processes. (a) Weather Report, an interactive outdoor art installation

which provides an evocative comparison of objective climate data and

participant-driven subjective memories. (b) Lift-Off, a existing artistic

hybrid 2D/3D sketching system, applied to visualizing medical data. . 45

x

4.2 Visitors walk through a tunnel of animated “balloon pixels” that depict

4.5 decades of local weather data constructed from both objective mea-

surements (right wall in this view) and the subjective memories of visitors

(left wall). 48

4.3 A tunnel of balloon pixels along the walking path in Mill Ruins Park,

Minneapolis, MN. 50

4.4 The data-to-visual mapping for each wall uses a hierarchical arrangement

for time, decades are displayed in the two leftmost columns, with the cur-

rent decade highlighted, followed by months of the year with the current

month highlighted, followed by days of the month, and so on. The display

animates to display the entire six decades of data over the course of the

night. 51

4.5 Two frames from an animated blue rain effect temporarily superimposed

over the objective weather wall. 52

4.6 Visitors enter weather memories using a three-stage, multi-touch interface

on a kiosk. 53

4.7 Thousands of visitors experienced Weather Report at Northern Spark . 54

4.8 The process of designing from a sketch in Lift-Off. 57

4.9 2D medical data can be converted to line images for use with Lift-Off.

Data credit: X-ray image used through Creative Commons from Ma-

jorkev on Wikipedia https://creativecommons.org/licenses/by/3.0/.) . . 60

4.10 A complete 3D model of the broken clavicle from two angles. Shown both

with ((a), (c)) and without ((b), (d)) the design scaffolding. 62

4.11 Using immersive data-driven 3D annotations to explain treatment options. 63

4.12 Three variants of the robotic mechanism, sketched in the 3D immersive

environment. 65

4.13 Critique of the robotic surgery device sketches can occur directly in the

immersive environment. 66

4.14 Weather Report drew in visitors to not only experience a visualization of

climate data, but reconsider their subjective understanding of climate as

it relates to objective information. 68

xi

5.1 Using traditional physical artistic media as input to the digital visual-

ization pipeline provides a richer visual vocabulary and opens the door

for artists to participate in creating more expressive and engaging 3D

scientific visualizations. This example helps scientists understand com-

mercially viable macroalgae growth in the Gulf of Mexico by encoding

temperature and salinity from remote sensing together with eddy direc-

tion and curvature and three nitrate concentrations from computational

simulation. 72

5.2 The ABR pipeline contains three main stages. 79

5.3 Artists will recognize the formal properties of (point, line, form, texture,

and color) in these visual examples. Visualization scientists will recog-

nize magnitude channels to encode ordered data and identify channels to

encode categorical data. The volume category focuses on color schemes

for volume rendering algorithms. 80

5.4 The EinScan-SE structured light 3D scanner makes 3D scanning of phys-

ical artifacts reliable and reproducible. 82

5.5 The Color Loom applet. Artists drag and drop source images into the

left panel and pull swatches of color from these, which are then copied

and arranged in the right panel to create a color map. 84

5.6 The Texture Shaper applet. A: Original source images, B: Selecting a

cropping box; C: Output images and normal maps. 85

5.7 The Infinite Line applet. A: The user interface with parameter controls

and texture synthesis preview. B: Examples of textures synthesized from

inkwash, rice grains, and ink dots. 86

5.8 The Glyph Aligner applet. Artists use trackball controls in the left panel

to align a 3D scanned glyph. The right panel provides a glyph field

preview using synthetic data. 87

5.9 The EinScan-SE structred light 3D scanner makes 3D scanning of physical

artifacts reliable and reproducable. 88

5.10 Example renderings and parameters for vis layers in the ABR rendering

engine. 89

xii

5.11 Options for applying vis assets to lines or surfaces include (a) color map-

ping, (b) data-driven texturing, (c) data-driven texturing with bump

mapping, (d) data-driven texturing with blending and masking, (e) data-

driven texturing with masking to create an organic line profile. 91

5.12 Two examples of surface layers using color and aspect ratio to encode

multiple variables in both 3D glyph and 2D glyph styles. 94

5.13 Two examples of line layers using color and texture to encode multiple

variables in both ribbon and tube line styles. 95

5.14 Two examples of surface layers using color, texture, and alpha masking

to encode multiple variables. 96

5.15 An example of volume rendering using a colormap as a transfer function

to encode a volumetric variable. 98

5.16 One of several results from the upcoming Chapter 6 ABR design study

with the biogeochemistry data in the Gulf of Mexico [Wolfram et al.

2015]. The legend has been automatically generated from the colormaps

used in the visualization. 101

6.1 Process and results from the internal exploratory design study with ABR

on the biogeochemistry data in the Gulf of Mexico [Wolfram et al. 2015],

left to right: pre-made glyphs; glyphs painted during the study; glyphs

constructed during the study; textures captured pre-study; detail of final

visualization; visualization of the Gulf of Mexico. 107

6.2 Left - Encoding options in Paraview, Right - Results from the internal

exploratory design study with Paraview. 108

6.3 Visualizing brain microstructure in 3D. 111

xiii

6.4 Top row: Two variations of handcrafted multivariate volume visualiza-

tion simulating water formation in the early universe. The turquoise

volume rendering represents the particulate density, the water is shown

in the curvilinear flowing blue forms, selected for their detail and thus

becoming a focal point [Lauer and Pentar 2012]. The orange, white and

green represent the three heavy metals being tracked, CH4, CO and OH

respectively. The comparison shows the artists iterations needed to ac-

curately depict the science given the complexity of variables glyphs and

modifiers within the system. The right side is the earlier image. The

left, the final, providing the emphasis on the water, encoded with an as-

sociative form. Bottom row: This Snapshots from the design process of

assigning elements, families, and modifiers to the data, starting with on

the left with a geometrical family typical of present-day scientific visual-

ization, moving toward a richer, handcrafted visual language, and then

using color to double-encode the type of each variable. 113

6.5 A supernova midway through its explosion. Left: A three-layer volume

rendering. In related work, scientists used this visualization to for the

first time see three of the variables from their simulation visualized in

the same three-dimensional space. Right: A visualization using hand-

sculpted families of design elements together with a single layer of volume

visualization depicts twice the number of variables and uses the extended

visual language to support hierarchical associations (e.g., the two styles

of water glyphs are both round and smooth, the three styles of metal

glyphs are all angular). 114

7.1 Three connected nodes - A supercomputer, a high-performance graph-

ics computer, and a consumer AR/VR device - are connected by two

types of transmission strategies: A) Streaming simulated data from the

supercomputer onto a rendering node, and B) Streaming a pre-rendered

immersive view from the rendering node to the low-cost HMD. 126

xiv

7.2 A sequence diagram showing how two data objects are transmitted from

a machine running Paraview to a machine running Unity upon some

change to the dataset (e.g. an incremented timestep or a new sampling

parameterization). 129

7.3 a) The client viewer application contains a Unity Prefab (green & red

arrows) that serves as an origin for the remoted rendered content, which

can be moved dynamically by the user. The user’s viewpoint relative

to this Prefab is captured (blue) along with camera parameters (purple)

and these are sent as a content frame request to the remote rendering

server. b) A scene of Unity objects (yellow) is captured by a virtual

camera (gray). This camera has camera parameters (purple) and offset

(blue) relative to a Unity Prefab (green & red arrows) based on the

request received from the client (a). c) The content is rendered as a

buffer of pixels, plus any additional structural information required such

as per-pixel depth, and returned to the client as a content frame response.

d) The received content frame is used to produce a 3D “facade” of the

original content, displaying only the features of the content visible from

the requested viewpoint. This facade is rendered interactively relative to

the client Prefab until a new content response is received. 130

7.4 (a) The settings required of a developer to add a Remote Render Server

prefab object to any Unity Scene. The developer must only specify a

port on which the server will listen for new Client connections. (b) The

settings required of a developer to add a Remote Render Client prefab

object to an AR/VR viewer application. The developer must specify a

port, IP Address, and a list of dynamic viewpoints from which to render.

In this figure, the left and right eyes of a VR Player Rig have been selected

and labeled respectively. 132

7.5 Specifying layers to be captured for each view in the client viewer appli-

cation . 134

7.6 A Unity scene of objects on the Remote Rendering Server application . 135

xv

7.7 A grid of quads aligned at the far-plane specified by the configuration

in the content frame response. Here the resolution of the grid has been

specified as 32x32 for the purpose of illustration, but in practice grid may

be more densely subdivided. 136

7.8 a) The mesh is deformed by displacing each vertex towards the content

frame’s viewpoint according to the sampled depth. b) The RGB compo-

nents of the texture are projected onto the mesh from the content frame

viewpoint. c) The rendered result from the requested viewpoint. d) The

rendered result from a different viewpoint offset towards the left. . . . 137

7.9 a) Before displacing by depth, the quads of the mesh are duplicated when

overlapping a depth discontinuity over a specified threshold. b) The RGB

components of the texture are projected onto the mesh, sampling the

depth component to determine whether the sample pixel belongs at the

corresponding mesh position, or discarded. c) The rendered result from

the requested viewpoint. d) The rendered result from a viewpoint slightly

off-set to the left. 139

7.10 a) The results of smear reduction with quads on the far-plane removed.

b) The RGB image projected only on the remaining mesh. c) The ren-

dered result from the requested viewpoint. d) The rendered result from

a viewpoint slightly off-set to the left. 140

7.11 a) Two meshes placed at the far-planes of two offset viewpoints. b) The

two RGB images projected onto their respective meshes and rendered

coincidentally. c) The rendered result from the right-most viewpoint. d)

The rendered result from near the left-most viewpoint. 141

7.12 Two images taken by photographers in Austin during an NSF event un-

veiling a new supercomputer called Frontera. At this event we presented

a demo of live data streaming from Frontera to a laptop running an ABR

visualization. 150

7.13 An ABR visualization being remotely rendered into a Magic Leap to be

viewed with a 3D printed bathymetry. 152

7.14 Our remote design discussion about an asteroid impact dataset being

viewed on many types of devices concurrently. 153

xvi

7.15 The visual results of adjusting two key remote rendering parameters, the

pixel resolution of the RGBD content and the vertex-resolution of the

facade mesh. For each parameter, three values were selected. Note that

when the facade resolution is low, blocky gaps are more likely to appear,

and glyphs have a higher chance of disappearing. 157

7.16 Varying degrees of distortion from an early stage of the remote rendering

project. (a) Small amounts of smearing between glyphs and the back-

ground when the user has moved a few centimeters from the requested

viewpoint. (b) Large amounts of smearing when the user has moved about

90 degrees around the scene from the requested viewpoint (an extreme

example). 159

7.17 (a) The result of adding a locally-rendered room environment with smear

removal integrated, leaving silhouette holes in occluded geometry rather

than 3D smears. (b) Additional artifact reduction by using separate

remote rendering views for Surface and Glyph layers in Unity 160

8.1 A prototype for what an automatically-generated legend could look like,

with hierarchical drill-downs for seeing more detailed multi-variable en-

codings. 171

xvii

Chapter 1

Introduction

Today, due to advances in technology, the data we wish to visualize are more complex

than ever. Even with the most cutting-edge computers and software, scientists are

quickly reaching the limits of what their visualization tools can support as they seek to

answer important questions, and present their progress to the public. Some scientists

are developing computational tools to leverage high-field Magnetic Resonance Imaging

(MRI) for understanding structural and functional alterations of brain connections in

neuro-degenerative disorders. Other scientists are working with massive computational

simulation models of ocean currents and biochemistry to study mariculture, specifically

investigating which regions of the earth’s oceans support commercially viable microalgae

growth as a sustainable source of biofuel. Complex data sets such as these can be as

challenging to understand as they are to collect.

As scientific data sets get more complex, the task of transmitting the relevant in-

formation into the human mind becomes more difficult. This challenge manifests itself

both when scientists are pursuing new discoveries in exploratory visualizations of highly

complex data sets, and when visualizations are curated for a public audience via ex-

pository visualizations. While studying the complex connections in the brain, scientists

wish to discern the relationships between the directions of several crossing pathways in

the white matter areas as they consider multiple microstructural parameters, such as

fiber density and axonal diameter. And as research in areas like these continues, scien-

tists must find ways to expose their complex progress to the public through engaging

1

2

and informative presentations — establishing a compelling connection with their audi-

ence — as they seek to educate and gain support for continued exploration. Producing

visualizations to effectively enable understanding in any of these cases requires careful

representation of several types of information at once.

Designing visualizations that successfully display numerous data fields simultane-

ously in a discernible way is a research problem that the field has struggled to to answer

over the past 20 years; in fact, this problem has been recognized by several as a “top

10” research problem in visualization [Johnson 2004]. Visualization is, itself, the pro-

cess of selecting meaningful visual metaphors for encoding data to make information

easily perceived. The most effective visualizations utilize an advanced understanding

of human perception, presenting information and relationships in an image that can

be accessed by a viewer. When designing a visualization for the effective analysis of

neural pathways in the brain, careful choices need to be made for each of the impor-

tant variables: Should color be used to reinforce the directional information? Can the

axonal width variable be accurately communicated by simply making the visualization

elements wider? How many sample points can be displayed with 3D glyphs before the

proverbial forest is obscured by the trees? Is it appropriate to combine both directional

glyphs and interpolated fiber lines in the same volumetric space? To design effective

visualizations is to leverage an understanding of intuitive meaning and narrative, and

to wield a discerning eye for color, texture, shape, and form. While these steps are es-

sential for producing an effective data visualization, the related skills are not necessarily

practiced by or taught to the scientists or computing practitioners who most often find

themselves designing visualizations.

1.1 Art and Science

In many ways, the visualization design task parallels the highly-skilled work of visual

artists. For centuries, artists have been using their hands to produce artifacts that

help us see the world in new ways and make sense of abstract ideas. Through use

of colors, textures, shapes, and forms, artists craft 2D and 3D works that express an

often complex concept or story in such a way as to be considered and discussed by

people of all backgrounds. During the Renaissance, art and science were intertwined

3

as scientific studies provided new inspiration for art, and artistic illustration provided

incredibly detailed means of documenting new scientific discoveries. And even today,

artists are inspired by science as they work to portray the same marvels, mysteries,

and monitions as those which scientists investigate. It stands to reason, then, that the

dictionary definition of visualization, “the act or process of interpreting in visual terms

or of putting into visible form,” describes works of art just as much as it describes

scientific data visualizations.

This connection between art and science has not gone unnoticed. The visualization

research community has often looked to artistic techniques such as color theory, illus-

trative style, and oil painting layers. These techniques have been studied by computer

scientists and distilled into non-photo-realistic rendering algorithms for automatic data

encodings [Healey 2001; Healey and Enns 2002; Kalnins et al. 2002; Kirby et al. 1999;

Laidlaw et al. 1998; Tateosian et al. 2007; Winkenbach and Salesin 1994]. The result is

often evocative and engaging beyond the otherwise sterile computer graphic aesthetic

of traditional interactive scientific data visualizations. However, these “stylized” visu-

alizations are usually produced synthetically, without the involvement or intervention

of artists themselves.

Even more exciting things can happen when artists and scientists come together

and align their interests and expertise through collaboration on scientific visualizations.

Donna Cox refers to such a partnerships as a “Renaissance Team,” in which a team

of interdisciplinary specialists come together to solve research problems [1988]. We see

several clear advantages to facilitating Renaissance Teams of scientists and artists to

create scientific visualizations:

• Scientists provide new insight into challenging and important issues which can

serve as sources of inspiration for artists.

• Artists are skilled at lateral thinking and can aid in re-framing ideas to shed new

light onto scientific problems.

• Scientists rely on visualizations to detect and analyze both large-scale patterns

and small details, and artists are trained to select colors, textures, shapes, and

forms for drawing the eye to both.

4

• Visual art naturally captivates all types of viewers — whether the viewer is search-

ing for meaning or dwelling on a particular emotion or idea — and science could

benefit from a similar level of engagement.

However, inviting artists directly into the process of designing interactive scientific

visualizations is difficult. While a few specialized techniques have been demonstrated for

placing visualization design into an artist’s hand, there are as of yet no fully integrated

workflows for artists to take on the design role in volumetric1 visualization at-scale. We

see several specific obstacles in the way of achieving the aforementioned advantages in

the design of volumetric scientific data visualizations:

• There are strong language barriers when it comes to communicating between sci-

entists and artists, both in terms of the scientists’ data to be visualized, and in

terms of the artists’ techniques.

• Existing 3D scientific visualization software does not present user interfaces con-

ducive to an artist’s iterative creative process, and is often built to only be accessed

in an advanced research lab.

• Current techniques tend to constrain data encodings to a narrow set of visual

elements that have been tested and vetted by the visualization community, further

restricting freedom to try bold new visual metaphors.

• Most visualization encodings are produced through entirely synthetic computer

graphics algorithms, vastly reducing the visual vocabulary of color, texture, shape,

and form with which traditional artists are familiar.

1.2 Palpable Visualizations

We overcome these obstacles and provide a new framework for facilitating collabora-

tions between scientists and artists in order to produce more discernible and engaging

data visualizations. We call these Palpable Visualizations. The word palpable has two

important definitions: (1) Easily perceptible by the mind, and (2) Capable of being

touched and felt. Definition 1 is both a desirable characteristic for a scientific data

1“Volumetric,” referring to the inherent spatial, 3D nature of the visualized data.

5

visualization meant to be analyzed as well as a quality of well-designed visual art. Defi-

nition 2 is a characteristic of art that naturally engages a museum audience to consider

and relate with a piece of artwork (whether touching is actually permitted or not), and

this accessibility will serve as a basis for providing deeper engagement with Palpable

Visualizations. Thus, we define the two Pillars of Palpable Visualizations:

1. Discernible: Palpable Visualizations should maximize the amount of information

being displayed and minimize the effort required to understand the information

being displayed.

2. Accessible: Palpable Visualizations should be both designed and presented in

such a way as to encourage the participant to relate with the information being

displayed at a physical level as one would relate with a museum installation. These

visualizations should also be targeted for widely-available immersive display.

To produce Palpable Visualizations, one of our key proposals is to create new tools

and techniques for grounding the entire visualization design process in the physical

world. By bringing the design process out of the algorithmic domain and into the

physical, the door is opened for traditional artists to lend their hands to the visualization

design task. New paradigms for visually encoding scientist-selected data with artist-

selected colors, textures, shapes, and forms help bridge the language barrier between

the two areas of expertise. New physical-digital hybrid workflows enable for artists to

rapidly prototype encodings as artifacts in the physical world and test them out in a

digital design environment. New artifact-based rendering techniques enable the final

encodings to closely resemble the original artist-crafted physical artifacts, harnessing

preexisting associations with physical forms. And new VR interaction and rendering

techniques enable fluid and natural exploration of complex volumetric scientific data,

even on affordable devices that can be accessed outside of advanced research labs by

both scientists and the public.

1.3 Thesis Statement

This brings us to the thesis of this dissertation:

6

Interactive computational workflows that equip artists to fluidly design scientific vi-

sualizations and enable any participant to immersively experience and relate with the

results can lead to visualizations that are simultaneously more discernible and more ac-

cessible.

1.4 Contributions

The key contributions of this dissertation are:

• An assessment of the current state of the art of immersive scientific visualization

through a challenging case study of ensemble visualization of 4D simulations of

blood flow through the heart.

• Two complementary case studies of studies that apply art and design methods to

exploring and presenting scientific and medical data.

• A theory and implementation of Artifact-Based Rendering, a framework of tech-

niques for enabling artists to create Palpable Visualizations

• Results of applying Artifact-Based Rendering to 3 specific 3D datasets including

biogeochemistry, brain microstructure, and astrophysics

• An implementation and characterization of remote rendering from a high-performance

rendering computer to a consumer untethered VR display with parallax correction

techniques and collaborative multi-user support

1.5 Overview of this Dissertation

In this dissertation, relevant related work is presented in Chapter 2. More in-depth

related work may be found in chapters 3, 4, 5, and 7.

State-of-the-art Visualization Design

In Chapter 3, our new immersive user interface called Bento Box allows fluid com-

parison of complex 4D engineering simulation ensembles in a research VR CAVE envi-

ronment. This work serves as an example of building cutting-edge immersive scientific

7

visualizations for discernibility with the state-of-the-art in current visualization tech-

niques, and also as a study in the limits in accessibility we hit while designing traditional

computer graphics applications.

Step Back to Examine More Accessible Design

Having learned some new things through our study of Bento Box, Chapter 4 takes a step

back to evaluate more fluid creative processes and strategies for broadening participation

(both in design and display) through two works, Weather Report and Lift-Off.

For Weather Report, we collaborate with architects in their own design method-

ologies to produce an interactive outdoor art installation which provides an evocative

comparison of objective climate data and participant-driven subjective memories. And

with Lift-Off, an existing artistic hybrid 2D/3D sketching system is adapted for col-

laborative design and discussion in two medical case-studies in which engineers and

physicians are free to explore and communicate with 2D and 3D sketching.

A Framework for Designing Palpable Visualizations

Chapter 5 details a framework enabling Artists to create Palpable Visualizations inspired

by the observations made in the previous two chapters. This chapter presents recently

published work on a new framework of Artifact-Based Rendering (ABR) techniques

with which artists can produce immersive 3D visualizations crafted entirely of aesthetics

collected from the physical world. And Chapter 6 demonstrates the power of ABR

through a design study and several examples of applying ABR to diverse 3D datasets.

Increasing Accessibility via Remote Rendering

Chapter 7 presents a final parallel step towards increasing the accessibility of palpa-

ble visualizations by providing a Data Streaming and Remote Rendering system

for transmitting complex immersive visualizations to affordable head-mounted-displays

from remote high-performance rendering computers and super computers.

Chapter 2

Related Work

2.1 Making Visualizations Discernible

Developing new and effective data visualizations is always challenging. And when it

comes to immersive visualizations of complex volumetric datasets, a critical goal is

maximizing the discernibility of the encoded data.

A specific example explored in Chapter 3 is designing a visualization to support

comparative analysis between several related data instances is an area of diverse re-

search approaches. Sedlmair et al. present a conceptual framework that is useful for

characterizing ensemble visualizations, including several fundamental approaches for

navigating through a parameter space [2014]. One such approach is “local-to-global”,

as demonstrated in Design by Dragging [Coffey et al. 2013]. Here, for the most part,

the user focuses on visualizing just a single instance of data at a time, and the emphasis

within the user interface is on making it easy to transition from the current instance

to others that make up the ensemble. Connecting to the literature on comparative vi-

sualization, this work uses what Kim et al. describe as an “interchangeable approach”

augmented with animated transitions [2017]. This approach has a key theoretical per-

ceptual limitation—the data to compare are not simultaneously visible.

A finer level challenge in visualization design is supporting the discernibility of in-

dividual variables within a data instance. This includes problems such as designing

effective colormaps for encoding scalar data ranges, or using texture to encode informa-

tion across surfaces. Seminal research on designing and testing perceptually accurate

8

9

colormaps for general use in visualizations [Moreland 2009; Rheingans 2000; Rogowitz

and Kalvin 2001; Ware 2012; Zhou and Hansen 2016] establishes several rules of thumb,

such as relying primarily on luminance and saturation for depicting magnitude data.

Tools are also available for evaluating and modifying maps to adhere to commonly ac-

cepted guidelines [Bujack et al. 2018; Kovesi 2014; Zhou and Hansen 2016], which closely

parallel the fundamentals of color theory as studied by artists [Albers 2009; Itten and

Birren 1970].

Varying texture in response to data is a technique that has also been used previ-

ously [Healey and Enns 1999; Laidlaw et al. 1998; Ware and Knight 1995], including

to encode uncertainty [Botchen et al. 2005]. Closely related to our work is that of In-

terrante et al. who encoded data using natural 2D textures of fibers and weavings of

different densities [2000]. Later Gorla et al. extended this to synthesize texture from

an example that follows a vector field on a 3D surface [Gorla et al. 2003]. We identify

data-driven synthesis as important step for future work.

2.2 Creative Design

This dissertation calls for the exploration of next-generation creative visualization design

tools, with a focus on AR and VR for complex volumetric datasets. Such tools will

allow artists to create new visualizations in a fluid, creative manner, and to design and

aggregate libraries of visual metaphors to support future visualization efforts. The field

of visualization is already rich with research into creative interfaces and artist-inspired

techniques.

Design is an inherent challenge when crafting any data visualization, as encoding

data into a visual form that effectively communicates meaning requires careful consid-

eration [Cox 2006]. Thus, the visualization community has often turned to the field of

creative design for inspiration as metaphoric mappings are needed. Healey’s techniques

seek to imitate painterly styles to create data visualization images [2001], Kirby focuses

on the flowing strokes of oil painting to bring life to visualizations of fluid mechan-

ics [1999], Interrante and Grosch took advantage of perceptual insights used by artists

when applying Line Integral Convolution to visualize the direction motion of compli-

cated 2D flow data [1997], Joshi and Rheingans propose using the work of cartoonists

10

to inspire new methods of time-varying data visualizations [2005], And Ma outlines

several researchers’ approaches to using artistic non-photorealistic rendering methods

to communicate shapes and spatial relationships [2002]. These techniques demonstrate

that art is an excellent inspiration for visualization design.

While these ideas are a few of the ways that technical designers and scientists are

indirectly learning from artists, other research endeavors to bring artists themselves into

the visualization design process. One key work in this area is that of Cox, who instigated

“renaissance teams” of artists and scientists through special software that enables this

collaboration, arguing that artists possess inherent talents that are increasingly impor-

tant as technology requires more and more “seeing” of complicated data [2008]. Many

more tools have been invented to this end. Mitchell, Ware, and Kelley proposed and

evaluated a method of human-in-the-loop parameter optimization allowing artists to

craft a visualization through interactive feedback, and showed that trained artists were

able to produce better results than non-artists [2009]. Bruckner and Gröller took on the

difficult issue of specifying volume rendering transfer functions with VolumeShop, an

interactive 3D illustration environment for directly manipulating the appearance of vol-

ume renderings [2005]. Later, Bruckner and Gröller developed another interface for the

specification of transfer functions, allowing artists to define the appearance of the profile

of volume rendered data using halos, similar to common lit-sphere techniques [2007].

What-You-See-Is-What-You-Get (WYSIWYG) is another form of direct-manipulation,

and Guo et al. have developed a volume data visualization tool that allows artists to

input sketch strokes to create transfer functions for volume rendering that offers a great

degree of control [2011]. More recently, Schroeder and Keefe have presented Visualiza-

tion by Sketching, an interface designed explicitly for artists to paint directly onto 2D

data visualizations to create color maps and glyphs; they were able to successfully re-

produce several classic data visualizations using only the artistic interface [2016]. These

techniques are paving the way for artists to become directly involved in the visualization

design process, and for inspiring scientists to think more creatively when communicating

their research.

However, each of these creative design tools are developed for a specific type of data.

Bruckner and Gröller’s work, along with that of Guo et al., are tightly focused on volume

data rendering. Furthermore, they only provide interaction on a traditional desktop

11

computer workspace. Schroeder and Keefe took another step forward by providing an

interface based on the tools with which an artist is already familiar – namely, a stylus-

based sketching interface – for designing visualizations of both 2D scalar and vector

fields in the same space. While this work propels the research of creative visualization

design forward, it falls short of providing fluid interfaces for working with the 3D nature

of complex volumetric datasets.

Samsel et al. have developed ColorMoves [2016], a design-oriented tool focused

on creating colormaps tailored to any type of data for a wide range of analysis tasks.

Accessible to both artists and scientists, ColorMoves provides a fluid 2D interface for

tailoring new colormaps to the distribution of a data variable using a wide range of

artist-curated colormaps. While ColorMoves is only supplemental (it requires exporting

a still frame from a data visualization system into a web interface), it is an excellent

example of one important piece of a creative visualization design tool: producing new

visual elements.

This dissertation looks at visualization techniques that allow the user to fluidly

manipulate and customize a 3D visualization, agnostic to the types of data being dis-

played. Furthermore, this dissertation proposes a unified experience for visualization

design across many types of data, collecting many of the currently isolated techniques

listed above.

2.3 Grounding Visualizations in the Physical World

Artists bring to the table a heightened emphasis on the connection data makes with

the people who view it. By opening visualization design to artists and their extensive

understanding of how humans experience the world around them, we hope that data

visualizations can be empowered to play a more intimate and impactful role in people’s

lives.

One direct way that data visualization is becoming more engagingly connected with

the world around us is through the practice of ‘data physicalization” [Jansen et al.

2015]. Data physicalization is the process of visualizing data via a physical output (3D

printouts, sculptures, active touch tables, etc.).

Often, physicalization for scientific data visualization takes the approach of starting

12

with complex computer-based spatial datasets and 3D printing them to make them more

physically accessible to audiences. One such example is Djavaherpour et al.’s work on

3D printing geospatial data to help viewers better understand the structure of a number

of geographically-located types of data [2017].

But an inverse approach can also be taken. Rather than starting with computer

models and manifesting them directly in the physical world, another kind of accessi-

bility can be achieved by starting with recognizable real-world artifacts and building

up data encodings with them. For example, artists like Mielbach [Samsel 2013] use

physical materials to provide context and connection for science through hand-crafted

physical data visualizations. Both visual artists and psychologists have studied the geo-

metric characteristics of shape (e.g., roundness, angularity, simplicity, complexity) and

their impacts on human emotional responses [Lu et al. 2012]. There is evidence that

data visualizations can be more effective and engaging when created by hand. Route

maps can be more effective when presented in a hand-drawn style [Agrawala and Stolte

2001], and hand-draw iconography improves engagement and retention in data-driven

storytelling [Lee et al. 2013; Rogers et al. 2017].

As we will discuss, grounding work in the physical world is one of our key strate-

gies to make visualization design accessible to designers and to make the visualizations

themselves accessible to a wide audience.

Chapter 3

Bento Box

Understanding the Current State-of-the-Art for Immersive SciVis

Figure 3.1: Bento Box is a virtual reality visualization and 3D user interface tech-
nique for comparative analysis of data ensembles, such as this set of 10 time-varying
simulations of blood flow around a cardiac lead in the right atrium of the heart.
Each column shows a simulation with different parameters, here varying the length
and stiffness of the lead. Each row shows a different view of the data. The top row
is a zoomed-out overview. Users add additional rows of complementary, zoomed-in
views during analysis.

13

14

3.1 Introduction

1 Scientific data visualization is an active research area with a large body of literature

regarding best practices and techniques. To establish a base-line for modern scientific

visualization, we look at a project that simultaneously relies on tried-and-true visual

design and novel interaction techniques. This chapter presents work of a large immersive

visualization system called Bento Box [Johnson et al. 2019a] as an example of the sort

of complex 3D data that palpable visualizations need to be able to support. 2 In the

conclusion at the end of the chapter, we will consider the limitations of a traditional

graphics application like Bento Box as it pertains to discernibility and accessibility.

Science and engineering workflows increasingly rely upon ensembles—“concrete dis-

tributions of data, in which each outcome can be uniquely associated with a specific run

or set of simulation parameters” [Obermaier and Joy 2014]. Analyzing these ensembles

is a challenging task that involves not just understanding specific data values and trends

but also making comparisons. Visualization can help, and recent ensemble visualization

research has made it possible to: (1) manage and render some of the large datasets that

are encountered with ensembles [Vohl et al. 2016]; (2) use interactive techniques to nav-

igate through large ensemble parameter spaces [Sedlmair et al. 2014], including using

both local-to-global [Coffey et al. 2013] and global-to-local approaches [Bruckner and

Moller 2010]; and (3) use simulation steering to explore “what if” scenarios [Waser et al.

2010, 2014]. Unfortunately for scientists and engineers, much work remains—successful

ensemble visualization requires not just a minor adjustment of the traditional visualiza-

tion pipeline but rather a significant reworking. Major current problems include:

• The lack of connection between the research on ensemble visualization and theoret-

ical research on comparative visualization [Gleicher 2017; Gleicher et al. 2011; Kim

et al. 2017] which discusses fundamental trade-offs between perceptual strategies

1This chapter is based on work published in Frontiers [Johnson et al. 2019a].
2Acknowledgements: Bogdan Tanasolu, Georgi Subashki, and Shan Sandy Wang assisted with devel-

oping simulations and data wrangling. Dr. Paul Iaizzo and the University of Minnesota Visible Heart
Lab provided access to heart geometry data and feedback during iterative development. This work was
supported in part with computing resources from the Minnesota Supercomputing Institute and hard-
ware donations from NVidia. The software utilizes the VRPN library maintained by UNCChapel Hill’s
CISMM project with support from NIH/NCRR and NIH/NIBIB award 2P41EB002025

15

required for making comparisons, such as juxtaposition (side-by-side), superpo-

sition (overlayed), interchangeable (animating through or interactively switching

between viewing a single data instance at a time), explicit encoding (e.g., comput-

ing the difference between data instances), and hybrid approaches.

• The lack of ensemble visualization techniques, including user interfaces, designed

specifically for use in virtual reality (VR) environments. We know perspective-

tracked, stereoscopic displays can outperform desktop tools for spatial perception

tasks [Ware and Mitchell 2005, 2008], but designing effective VR visualization

tools is challenging and requires synthesizing and refining user interface research

results on bimanual interaction [Hinckley et al. 1997], navigation [Stoakley et al.

1995], selection [Bowman and Hodges 1997], and manipulation [Mapes and Moshell

1995] (citations limited here to some early, seminal works); these VR and 3D

user interface research results are not always widely cited and used in scientific

visualization.

• The need for additional examples (i.e., case studies) of how to organize data and

perform rendering of different types of ensembles. This is important because

rendering at the ensemble scale requires fundamentally different approaches for

4D fluid dynamics computed on unstructured grids (explored here) as compared

to, for example, 2D maps and imagery [Javed et al. 2012]. In addition, visualizing

spatial relationships and interaction between data parts in multimodel scenarios

(i.e. fluid and structure interactions) is rarely explored [Kehrer and Hauser 2013].

This chapter addresses the specific unsolved challenge of visualizing moderate-sized

ensembles (e.g., containing on the order of 10 data instances) of state-of-the-art, time-

varying fluid-structure interaction simulations run on high-performance computing plat-

forms. This size of ensemble is useful to study because it is large enough to present

challenges in rendering and visual comparison but not so large as to rule out the pos-

sibility of visualizing the entire ensemble simultaneously. The strategies developed for

this scale can likely be combined with others (e.g., filtering) to address larger ensembles.

This chapter also focuses on VR-based visualization. The rationale for VR is based

on the data. With interdisciplinary collaborators, we are studying simulations of blood

flow through the heart, and this requires analyzing complex spatial relationships, such

16

as subtle differences in 4D vortical structures. Formally, low-level perceptual studies

suggest that perspective-tracked, stereoscopic visualization can facilitate understanding

complex spatial relationships found in 3D data [Ware and Mitchell 2005, 2008], providing

evidence for the likely utility of VR in our work. Informally, our collaborators have

consistently cited an improved ability to see spatial patterns in the data with VR and

repeatedly demanded to analyze the data using VR over the course of a 5+ year project.

Taken together with the fact that there is no longer a financial barrier to using VR for

scientific visualization, we take this as strong motivation.

Our proposed solution builds upon recent theory on comparative visualization in

2D contexts [Gleicher 2017; Gleicher et al. 2011] as well as 3D and 4D (3D + time)

contexts [Kim et al. 2017]. Specifically, we adopt the fundamental approach to visual

comparison known as juxtaposition and adapt it to suit VR-based volumetric visualiza-

tion.

The rationale for the juxtaposition strategy as compared to the interchangeable

strategy (another fundamental approach discussed in the literature) can be summarized

by the visualization rule of thumb, “eyes beat memory” [Munzner 2014]; making com-

parisons is easier if we can see the items to compare simultaneously rather than trying

to remember one or more previously viewed items. The rationale for juxtaposition as

compared to superposition is specific to the data of interest. These 4D data are so

dynamic and the spatial patterns so complex, that we rule out superposition due to

the extreme complexity and occlusion issues that would occur when rendering 10 blood

flow datasets in the same visual space. The final fundamental approach to comparative

visualization discussed in the literature is explicit encoding. Explicit encoding could be

used within an extended version of our tool (future work); however, designing a new

explicit encoding for comparison is so dataset specific that it often becomes its own

research project with results that may not translate well to other datasets.

This leads us toward a juxtaposition approach. Juxtaposition, however, presents its

own trade-offs, which make designing an effective ensemble visualization challenging.

For example, one concern with juxtaposition is that when visuals to compare are viewed

side-by-side, the viewer’s eyes must move back and forth between the visuals in order to

find correspondences and notice differences. This takes effort and time, and the näıve

approach of simply rendering each data instance, one next to the other, is unlikely to

17

be the most useful, especially when the key differences are subtle and appear in small

sub-regions of the volume data. Our strategy to mitigate this is to make it possible for

users to interactively design a spatial layout that places all of the volumetric features

of interest as close as possible to each other. We call the resulting tool, which neatly

slices and places data into an organized grid of sub-volumes, Bento Box.

Figure 3.1 shows Bento Box in use with the medical device design application. We

know engineers need to analyze several important sub-volumes of data within the right

atrium of the heart, including: (1) the stress in the right atrial appendix, (2) the speed of

the flow in the main vortex that forms, and (3) the stress through a cross-section of the

lead inserted in the heart. Engineers must analyze all of these aspects and more, making

comparisons across each instance, in order to completely understand the ensemble. A

key design goal is, therefore, to make it as easy as possible for users to compare a specific

volumetric feature (we will call this a sub-volume of interest) while also switching focus

easily back and forth between several sub-volumes of interest. The Bento Box technique

accomplishes just this.

Bento Box naturally draws upon and advances research that is relevant to both the

VR and Visualization research communities, and we expect this work to be especially

relevant to the growing number of researchers that span the two communities. Our

contributions necessarily span both technical areas and include:

• The design of Bento Box, a VR visualization technique for comparative analysis

of 4D data ensembles.

• A novel bimanual 3D user interface that supports: (1) zooming and reframing

the Bento Box, (2) selecting sub-volumes of interest, (3) navigating within these

sub-volumes, and (4) specifying multiple critical times to compare.

• A case study that describes how to apply rendering and data-sampling algorithms

for visualizing Fluid-Structure-Interaction (FSI) simulation data for the first time

to multiple instances of these data simultaneously in stereoscopic, head-tracked

VR.

• A performance evaluation of the rendering and data sampling strategies applied

to the cardiac application.

18

• User feedback from the interdisciplinary application.

The chapter is organized as follows. After additional discussion of related work,

we present the Bento Box technique. The key novel aspects here are the visual layout

and VR user interface, both of which are likely to generalize to use with other volu-

metric datasets. Then, we present the application developed as part of a multi-year

interdisciplinary team-science research project; this includes important details, such as

data sampling strategies, that are required to make the technique practical for use with

modern, actively researched 4D flow datasets. The real-world application serves as an

initial evaluation of the technique, and both user feedback and rendering performance

are reported. Finally, we discuss limitations and future work as well as conclusions.

3.2 Related Work

Several areas of related work are relevant.

3.2.1 Ensemble Visualization & Comparative Visualization

Sedlmair et al. present a conceptual framework that is useful for characterizing en-

semble visualizations, including several fundamental approaches for navigating through

a parameter space [Sedlmair et al. 2014]. One such approach is “local-to-global”, as

demonstrated in Design by Dragging [Coffey et al. 2013]. Here, for the most part, the

user focuses on visualizing just a single instance of data at a time, and the emphasis

within the user interface is on making it easy to transition from the current instance

to others that make up the ensemble. Connecting to the literature on comparative vi-

sualization, this work uses what Kim et al. describe as an “interchangeable approach”

augmented with animated transitions [2017]. Recall, this approach has a key theoretical

perceptual limitation—the data to compare are not simultaneously visible.

Bruckner and Möller present an alternative [2010], characterized by Sedlmair et al.

as “global-to-local”. Here, the visualization system starts with an overview in the form

of thumbnail images. The thumbnails enable juxtaposed comparative visualization at

the overview level. Interactive filters then make it possible for users to narrow the search

space to the most promising subset of the ensemble for closer inspection. Individual data

instances can then be examined one at a time in a single 3D view window. In comparing

19

with Bento Box, a major strength of this approach is the filtering, which enables the

technique to scale to larger ensembles. However, a drawback relative to Bento Box is

that detailed analyses of the final volume data are done on the desktop with a single 3D

window at a time. Comparing this as well as related ensemble visualization tools that

include some form of juxtaposed comparison, for example World Lines and follow-on

systems [Waser et al. 2010, 2014], a key difference with Bento Box is supporting not

just comparison via overview thumbnails in the top row of the widget, but also detailed

comparisons of even subtle variations across multiple volumes that can all be viewed

simultaneously from multiple vantage points in VR.

Vohl et al. [2016] have done some of the most impressive work in ensemble visualiza-

tion from a systems perspective, multiple data instances may be displayed juxtaposed

for collaborative analysis using an ecosystem of displays (desktop, mobile, and VR); in

VR/large-screen mode the system uses a handheld tablet as a display controller. In

contrast, Bento Box is optimized for VR and introduces a bimanual user interface for

not just rotating data and assigning data instances to specific sub-displays but also for

selecting sub-volumes of interest in 3D space and reframing the virtual display for com-

fortable viewing. This is intentionally designed to enable a fluid style of data exploration

so users do need to look away from the data when operating the interface.

Chi et al. [1997] introduced a spreadsheet-inspired layout for data visualization,

highlighting ”Custom Tabular Layouts Enable Comparisons” and including data pro-

cessing operators, such as subtracting one data instance from another. Working with

volumetric data where explicit “difference” encodings are often more complex to com-

pute, Jankun-Kelly and Ma [2001] combine volume rendering and a spreadsheet-like

interface to visually explore an ensemble. Axes may represent ensemble parameters,

time, color maps, or transfer functions. Bento Box extends the concept of a 2D grid,

small-multiples-style layout to one where users to interactively set the views along the

vertical axis based on spatial croppings of volume data. In addition, Bento Box rein-

terprets the approach as a native VR visualization technique with integrated 3D user

interface.

Finally, Alabi et al. [2012] take an innovative approach to comparative visualization

where multiple surface models are sliced and then displayed in an interleaved 3D space.

The result is visually distinct, but the approach shares a similar underlying theoretical

20

reasoning with Bento Box. Both techniques prefer juxtaposition to superposition, rea-

soning that the resulting 3D visual display would be too complex with superposition.

However, both also recognize that the spatial separation that comes with a näıve ap-

plication of juxtaposition (one complete dataset next to another, then another, ...) is

also problematic. The solution for both involves slicing the data, placing corresponding

sub-volumes as close together as possible. The key differences in Bento Box are the

use of more complex 4D data, including fluid flow, which would likely not work well

with the extreme spatial interleaving Alabi et al. use for surfaces, and the fact that the

sliced display can be defined interactively by the user directly within a VR environment.

Slicing to pull out subsets of data for comparison has also been used in 2D visualiza-

tion (e.g., for time-series and image data) [Javed and Elmqvist 2010; Javed et al. 2012];

but, the spatial arrangement and interface are necessarily different when working with

volume datasets.

3.2.2 Flow Visualization & Animation

There is a long history of visualizing fluid flows in VR, dating to Bryson’s seminal

Virtual Wind Tunnel [1996]. Early work in this area relied upon interactive visualization

widgets, such as interactively placed particle emitters and streamline rake widgets. This

elegantly enables user exploration but it also has a key limitation in that the data are

essentially hidden from the display until the user places widgets to reveal them. The

Particle Flurries technique takes an opposite approach, using a fleet of carefully seeded

particles to present a synoptic animated view of the data [Sobel et al. 2004]. For many

tasks (e.g., gaining an overall understanding of a flow), we see this as the preferable

approach; however, it is not well suited to comparative visualization, as reading 10

animated flow visualizations side-by-side would simply be impossible from a perceptual

standpoint. Our approach is a hybrid. Flow visualizations are pre-populated with 3D

comets inspired by Mitchell et al.’s carefully designed 2D streaklets [2009], but the

default presentation is static rather than animated.

The best role for animation is something that was considered carefully in Bento Box.

Prior perceptual research suggests that, although animation can be useful for explaining

trends, it is less useful for data analysis tasks [Robertson et al. 2008; Tversky et al. 2002].

For identifying trends, it is often the case that a carefully designed static visualization

21

is better than an animated visualization. In addition, prior VR-based studies suggest

that interactive control over time is useful and important to support some tasks, such

as identifying the exact moment of collision by two objects in 3D space [Coffey et al.

2012a]. These motivate our approach to default to static views of multiple time steps

and support interactive control of time and animated overviews as options. A timeline

interface is used; however, the direct manipulation interface introduced by Hentschel et

al. [2008], would integrate perfectly into Bento Box and is a planned future addition to

the tool.

3.2.3 Bimanual & 3D User Interfaces

Navigation, object selection, and object manipulation are major topics within the VR

and 3D user interface research [Bowman et al. 2004]. What is unclear from the prior

literature is how best to move these techniques from user studies or other application

scenarios to complete, high-end visualization applications. For example, there is no prior

work that demonstrates how to select sub-volumes of interest within 3D visualizations

using the same bimanual controllers that are also used for multi-scale navigation of

multiple datasets and for system control (e.g., interacting with menus and timelines).

Bento Box extends the bimanual scene navigation and object manipulation tech-

niques first introduced by Mapes and Moshell [1995], which have since been revisited

and revised many times (e.g., [Cutler et al. 1997; Keefe et al. 2001]). Specifically, Bento

Box makes it possible to use these techniques at multiple scales. When the user’s hand

enters the Bento Box, the technique transitions from a scene-level manipulation to a lo-

cal object manipulation interface. Another extension is that a laser (ray-casting) based

selection is used for easy, coarse selections when working from a distance, but this seam-

lessly transitions to a cursor, point-based interface for detailed selection of sub-volumes

of interest when the hand is held inside the Bento Box. In addition to these smooth

interface transitions, Bento Box also includes automated view adjustments for quickly

zooming to a subsection of the grid or zooming back out to an overview state.

Building upon early theoretical work in bimanual user interfaces in 2D [Hinckley

et al. 1997; Leganchuk et al. 1998] operations are assigned to the hands following the

guidance that the non-dominant hand should set the context within which the dominant

hand performs, often more precise, operations. Prior work in VR has used these interface

22

design concepts [Keefe et al. 2001, 2007], but in different applications (e.g., 3D painting).

There are just a few prior examples of bimanual 3D spatial interfaces for manipulating

and navigating through volumetric scientific data (e.g., [Coffey et al. 2012c; Laha and

Bowman 2013]), and none of these specifically support comparative visualization.

Bento Box also extends research on button overloading in VR (e.g., [Zeleznik et al.

2002; ?])by providing an example of how this can be usefully employed for data visual-

ization tasks rather than 3D modeling. This is achieved via a state machine that uses

the current context defined by the positioning of the hands relative to the body, each

other, and/or virtual content to decide how to interpret each button press.

3.3 Bento Box: Concept, Visual Layout & Interface

This section presents the concept, visual layout, and specific interactive techniques that

make up Bento Box. Some figures refer to the cardiac application mentioned earlier as

examples, but we defer a detailed description of that application to section 3.4.

We designed Bento Box to run on multiple VR environments that are popular for

scientific visualization today, and demonstrate that the current implementation runs on

both a high-end 4-wall Cave, which is useful to facilitate discussion with an engineering

design group, and a low-cost HTC Vive personal VR display. The minimum required

VR hardware is as follows. The technique relies upon a perspective-tracked, stereoscopic

VR display and requires input from two 6 degree-of-freedom tracked input devices (i.e.,

VR wands), one held in each hand. Each device must have two buttons, one primary

and one secondary that report separate button down and button up events. These input

requirements are a subset of what is available via the hardware for the current-generation

HTC Vive. In the 4-wall Cave environment we have used, users hold two tracked 3D pen-

like devices [Jackson and Keefe 2016] to provide the simple button input together with 6-

DOF tracking. Our implementation uses the MinVR toolkit [Jackson 2017] to facilitate

deploying the application to these multiple platforms. The technique is designed to be

operated by one user, but in practice engineering teams like to stand together and work

as a group, looking over an operator’s shoulder in the Cave environment pictured in

Figure 3.1.

23

Figure 3.2: The Bento Box widget arranges multiple views of volume data within
a grid of “cubbies”.

3.3.1 Concept and Visual Layout

When users enter the environment, they see the “Bento Box” widget, an arranged grid

containing multiple views of volume data, floating in front of them as in Figure 3.1. A

3D cursor is also drawn at the location of each tracked hand.

As diagrammed in Figure 3.2, each row and column have a specific meaning. Each

row has unique view settings, which primarily define a specific sub-volume (i.e., a

volume-of-interest) to crop from the original data along with the viewing direction.

Additional parameters, such as the particular stress fields or other visualization prop-

erties to include in the view may also be set on a per-row basis. Each column presents

data for a single data instance (i.e., the results of one simulation run) from the ensem-

ble. If the user wishes to compare multiple timesteps (i.e., times-of-interest), this entire

row-column structure can be duplicated multiple times.

Using this layout, the concept behind and intended use of Bento Box is for users

to interactively create a comparative volume visualization where each column can be

thought of as something like a volumetric, visual “feature vector”. The user’s goal is

24

first to select appropriate sub-volumes of interest within the data in order to build up

a complete picture of the interesting variation in the data while, importantly, cropping

out or deemphasizing regions that are less important. The data comparison task then

becomes to compare these visual feature vectors. For each key feature (defined in a row),

users make visual comparisons across the data instances in the ensemble (columns).

The key to creating a useful visual summary of the data is to explore and experiment:

looking at the data from different angles, creating views of new sub-volumes, changing

visualization parameters, navigating to different views of the widget, and adjusting

the viewpoint used to render individual rows. We aim for users to naturally, through

this exploratory and interactive process, arrive at a visualization that brings the most

important sub-volumes to the forefront of the visual field while at the same time hiding

or deemphasizing distracting or less scientifically relevant regions of the volume. Bento

Box makes the process of exploring the data and creating the ensemble visualization

fluid, natural, immediate, and iterative—users can perform the navigation and display

management regularly and naturally during data analysis without even taking their gaze

away from the dataset.

3.3.2 Zooming and Reframing the Widget

Viewing the entire Bento Box is like looking at an overview of the entire ensemble.

Some major, high-level patterns are visible at this level, but the visualization within

each individual “cubby” is too small to investigate in detail. This makes it important to

be able to fluidly zoom in and out of the widget and otherwise reframe it on the display

in order to see just the current portion of interest.

Since zooming and reframing is so critical to the user experience, Bento Box supports

two complementary interaction techniques, each appropriate in a different context. The

first is controlled by the input device held in the dominant hand (DH) and is appropriate

to use when the Bento Box is displayed at a small scale (i.e., used as an overview). In

this situation, a laser pointer is used as the virtual cursor for the DH and the user simply

points this laser at the Bento Box to highlight a specific cubby to investigate in detail.

A click and release of the DH’s primary button triggers an animated transition that

zooms the view into the selected cubby. Alternatively, by holding the primary button

down and sweeping the laser across multiple cubbies, the user may paint a selection

25

onto the widget, and the view will zoom to comfortably fit the bounds of this selection.

In each case the BentoBox is scaled so that the front faces of the cubbies selected by

the user fit within a 1 physical meter x 1 physical meter area centered in front of the

user. To return to the default position and scale the user clicks and releases the same

primary button while pointing the laser away from the widget. (When explaining the

interface to users, we make this interaction easy to remember by telling them, “to go

back, simply point the laser backwards over your shoulder”.)

The one situation where this pointing interface is not efficient is when the view is

zoomed in and the user wishes to make a small change (e.g., pan to the right by one

or two cubbies). It is inefficient to do this by zooming all the way out and then back

in to nearly the same position. Thus, the interface includes an ability to grab onto and

translate the world directly. This is done with the primary button on the input device

held in the non-dominant hand (NDH). To avoid unnecessary translations and rotations,

this motion is constrained to only translate within the plane of the widget. Scaling is

also possible. While the NDH primary button is depressed and the translation mode is

active, pressing and holding the DH primary button activates the scaling mode. The

scale of the Bento Box is then adjusted in proportion to the distance between the two

hands. This second mode is like a constrained version of early VR object-manipulation

interfaces [Cutler et al. 1997; Mapes and Moshell 1995], which are also similar to modern

2D multi-touch interfaces (i.e., translate with 1 finger, scale with 2 fingers).

Note that the interface intentionally overloads the functionality of the DH primary

button—it means different things in different contexts. This strategy has been used

successfully in several other bimanual 3D user interfaces [Zeleznik et al. 2002; ?]. In

general, the interface follows a pattern of using context to infer user intent whenever

possible. This allows a complex interface to be specified using only two buttons on

each hand-held input device and helps to overcome both learnability and “fumbling

in the dark” problems that often arise in 3D user interfaces that use controllers with

many buttons. It is important to consider the state of the system when designing and

implementing this type of interface. Thus, Figure 3.3 presents a detailed Finite State

Machine for the Bento Box interaction. The virtual cursors drawn in the scene change

to provide visual feedback (e.g., from a laser pointer to a picking sphere) when moving

from state to state.

26

Figure 3.3: The 3D bimanual user interface is implemented as a finite state machine.
There are four main states, and the system transitions between them based upon
the positioning of the hands (DH = dominant hand, NDH = non-dominant hand)
relative to the cubbies. As illustrated in the blue portions of the diagram, the
actions triggered by the pressing the buttons on the VR wands held are different
depending upon the context provided by the current state.

3.3.3 Creating and Reframing Sub-Volumes

As shown in Figure 3.3, a state transition is made when the DH cursor is moved within

the bounds of the volume of a specific Bento Box cubby. Here, the concept is that

the user is no longer in an overview mindset but rather in an inspection mindset. The

cursor changes from a laser pointer to a small sphere to indicate this shift.

The most important operation in this state is to indicate a new (sub)-volume of

interest and thereby add a new row of view settings to the Bento Box widget. This is

27

Figure 3.4: A new sub-volume of interest is created with an interactive selection.
From left to right: (a) Assume the starting state is a Bento Box with two rows.
(b) A click within any of the cubbies (in this case, one from the top row) using the
primary button on the DH wand defines a center point for the selection (the black
dot). (c) Dragging defines the size of the selection box to create. (d) After releasing
the button, a new row of view settings is added to the bottom of the Bento Box.

done via a click and drag operation. The 3D location of the cursor at the moment the

DH’s primary button is clicked is used as the center of the volume of interest, and the

extent of the volume is set interactively as the cursor is moved away from this center.

It is critical to display interactive visual feedback during this operation (Figure 3.4) so

that the user may size the volume appropriately relative to features observed in the data

visualization. The selection operation is completed by releasing the primary button.

Creating the new sub-volume adds a new row to the Bento Box widget. All of the

view settings are copied from the originating row with the exception that the transfor-

mation matrix used to draw the data within the widget is adjusted to exactly map the

sub-volume displayed in the new row to that selected in the originating row. The exact

transformation is described when discussing rendering in Section 3.3.6.

While the user is in this same inspection mindset, there is often also a need to

view the data from a slightly different direction. Mirroring the use of the hands in

the overview situation (DH = pointing/action, NDH = framing), this is accomplished

with a grabbing operation controlled via the NDH. Again, the context provided by the

positioning of the hand in space is used to distinguish a local grab that manipulates

a sub-volume from the global operation that moves the entire Bento Box widget (see

transitions in Figure 3.3).

28

Figure 3.5: A visualization design palette is used to change the variable displayed on
each major graphic element of the visualization (in this case: heart walls, lead, and
flow) and to adjust the color map applied to the data. A set of possible color maps
to apply to each variable is loaded during initialization, and the user may change
the color map to display in each row of the Bento Box interactively by dragging one
of these colormaps onto a specific row. Toggle buttons at the bottom of the palette
control the visibility of specific data instances (the columns), labeled with instance
parameters.

3.3.4 Changing the Visualization with the Design Palette

Figure 3.5 shows the visualization design palette, which is positioned to float in the

air next to the user, coincident with the left wall of a Cave when running in a Cave

display. The palette contains one section for designing the visuals used for each major

graphical component of the visualization. Figure 3.5 shows an example from the cardiac

application described in detail in Section 3.4. Here, there are three major graphical

elements: the heart walls, the cardiac lead, and the flow path lines.

The heading for each section includes the name of the graphical element. Next to this

is a button that can be selected with the virtual laser pointer attached to the dominant

hand cursor and then pressed with a click on the primary button on the stylus. This

cycles through a list of possible data fields that can be mapped onto the graphics (e.g.,

von Mises stress, Principle Stress, pressure).

Below this, the palette contains a set of color maps that can be used to present the

29

data. With the laser pointer, a dragging operation is used to drag the colormap to a

specific row of the Bento Box. While dragging, the laser cursor changes to include a

colormap icon and rows of the Bento Box highlight as the laser passes over them to

provide visual feedback. The use of dragging to control this operation is intentional,

with one click and release, the user is able to specify both the specific color to apply

(clicking while pointing at the design palette) and the row to apply it to (releasing while

pointing at a Bento Box row). The last choice in each colormap list is a blank mapping

(”Hide”), which removes the visual element from the scene completely.

Finally, an additional section at the bottom of the palette contains a set of toggle

buttons, one per Bento Box column, to control the visibility of each data instance.

3.3.5 Using the Interactive Timeline

By default, each cubby in the Bento Box displays data from the same moment in time;

however, additional time-points of interest (we call these critical times) can be added,

extending the grid as diagrammed in Figure 3.2. Critical times are created and adjusted

using an interactive timeline that is activated at a location in front of the Bento Box

widget when the secondary button in either hand is clicked. The timeline acts as a

modal widget, disabling the Primary Bento Box FSM shown above the dotted line in

Figure 3.3 when the Timeline Active state is active. The timeline includes two virtual

buttons that float in space and may be selected by the user’s cursor. The first adds a new

critical time to the display. This adds an indicator (color coded sphere) to the timeline

at the correct time value and also adds the appropriate columns to the Bento Box. The

critical times can be adjusted dynamically by grabbing onto the corresponding spheres

on the timeline and moving them using the DH’s primary button. While grabbing, the

spheres can also be deleted by pulling them off the timeline by a distance of more than

0.3 meters and releasing. These interactions are demonstrated in the accompanying

video.

30

3.3.6 Rendering Multiple Clipped Volumes

Bento Box requires rendering multiple views of multiple volumetric data instances. Each

row is rendered using different view settings, which consist of: (1) an affine transforma-

tion matrix that transforms the raw volume data to a particular view of a sub-volume

of interest, and (2) visual settings, such as the set of color maps and variables to be

displayed. Since the view may require the data volume to be drawn at a scale that

eclipses the size of its cubby, the rendering must be clipped to fit within the cubby.

For each cubby in the widget, the transformation matrix that maps the raw data to

widget space, MD2W , is composed of three parts and calculated as follows:

MD2W = MV 2W ∗MC2V ∗MD2C . (3.1)

Here, MD2C (Data-to-Cube), transforms the bounding box of the raw volume data to

fit within a unit cube centered at the origin. This transformation is specific to the data

provided with each new application; the same matrix is used for every cubby in the

widget.

MC2V (Cube-to-View) transforms from the unit cube space to the view of the sub-

volume selected by the user—this includes scale, rotation, and translation); the same

matrix is used for each row in the widget. When the program starts, with only the top

row of the Bento Box visible, MC2V is set to the identity matrix. When a new row

is created, the matrix to use for this new row is computed using the matrix from the

originating row. The following equation is used, where where S() constructs a scaling

matrix, T () constructs a translation matrix, and p and r define the center point and

radius specified by the user (in View-Space coordinates).

MC2Vnewrow = S(1/r) ∗ T (−p) ∗MC2Voriginalrow
(3.2)

Finally, MV 2W (View-to-Widget) transforms from the view space defined for each

row to widget space by translating by a vector of the form (cubby width∗row, cubby height∗
col, 0) and scaling to match the current size of the widget. This is a simple translate-scale

matrix, aligning the view to the specific cubby in which the data are to be rendered.

To clip each view to fit within its respective cubby, a clipping mesh is used. We

31

chose a cube with rounded edges, but any convex shape of unit dimensions may be

used. Before the view is drawn in a cubby, the back faces and front faces of the clipping

mesh are rendered to two depth textures.

In our implementation, the graphics displayed for each data instance can be any

3D scene drawn using a traditional shader-based rasterization pipeline. There are two

steps to adapt an existing rendering pipeline to work with Bento Box. First, the scene’s

model matrix Moriginal should be modified using MD2W before the Model-View matrix

is computed.

Mnew = MD2W ∗Moriginal (3.3)

Second, the fragment shader should be adapted to perform clipping to fit within two

depth textures. For each fragment of the data scene, the fragment should be discarded

if it falls nearer to the camera than a given Front depth texture, or discarded if it falls

farther from the camera than a given Back depth texture.

3.4 Application and Results

The core Bento Box concept and technique described thus far, which we believe will

generalize to other ensemble visualization problems, was inspired by the needs of a spe-

cific real-world data analysis problem, using an ensemble of fluid-structure-interaction

(FSI) simulations to design improved medical devices. This section describes in detail

the specific data management strategies developed for the application along with user

feedback and quantitative performance measures from this first application of Bento

Box.

3.4.1 Background: Cardiac Leads in the Right Atrium

Cardiac leads are the electrical cables that connect the heart to an artificial pacemaker

device. The data visualized here come from a specific set of simulations designed to

understand the impact of lead stiffness and lead length on the blood flow and stresses

in the right atrium. The scenario is diagrammed in Figure 3.6. The goal of the study

is to improve the underlying device technologies as well as procedures for implanting

and extracting the devices. A 3 × 3 design was used for the initial study with three

32

Figure 3.6: Diagram of the simulation scenario with a cardiac lead implanted in the
right atrium of the heart.

lead lengths (108mm, 110mm, 112mm) and three lead stiffnesses (8N/mm, 9N/mm,

10N/mm corresponding to Young’s Modules 1145.92MPa, 1289.16MPa, 1432.39MPa),

resulting in 9 data instances. Later, one additional run (116mm, 8N/mm, 1145MPa)

was added to the ensemble to understand the extreme case of extending the lead length

as far as possible without touching the walls of the atrium.

The simulation extends Runesha et al.’s prior model [2016] and is built using the

ABAQUS solver. The bounding geometry of the right atrium is a smoothed version of a

real heart anatomy captured via CT scan, and the cardiac lead is modeled as a uniform

wire entering the right atrium through the superior venae cavae and exiting through the

tricuspid valve. Both the anatomy and the cardiac lead deform slightly over the course

of a heartbeat. Each run consists of 800 timesteps for a 0.8 second heartbeat. Velocity

and pressure within the volume along with stresses within the lead and along the walls

of the atrium are saved at each timestep.

3.4.2 Sampling and Visualizing Solid Domain Data

As in most real-world ensemble visualization problems, some data management strate-

gies are required in order to efficiently render many instances of the volumetric data.

The approach described here is tailored to fluid-structure interaction (FSI) data and

33

uses different strategies for solid domain data (Abaqus Implicit Solver) and fluid do-

main data (Abaqus CFD Solver). Since a VR rendering is required, the challenges of

rendering large scale data cannot be solved with just an incremental loading or stream-

ing approach, such as those used in recent 2D rendering contexts [Fisher et al. 2012;

Glueck et al. 2014]. Here, there is also a 3D computer graphics rendering problem where

the data to be rendered at each frame are simply too large to fit within graphics card

memory. The techniques described here are similar to those described previously in the

literature for solid domain [Beneš and Kruis 2015; Lee and El-Tawil 2008; Liangyin et al.

2018] and fluid domain [Falk et al. 2016; Kuester et al. 2001; Sobel et al. 2004; Zhao

et al. 2017] data visualization, but we believe this research provides the first example

of extending and using both styles of visualization simultaneously to display multiple

instances of FSI data in a head-tracked, stereo VR environment. Thus, we provide a

detailed account as a case-study-level contribution.

The solid domain describes properties of deformable meshes like displacement and

stress and defines the physical structure of the volumetric solid with a mesh. The

element and node properties of the simulation are used to generate a triangulated mesh

that can be rendered. Triangles are constructed from the supplied primitives and passed

to the GPU. Each instance uses its own index and vertex array since the hearts deform

as a result of the simulation.

Since the solid data for all instances, variables, and time steps are too large to fit

onto the GPU, optimizing the GPU memory and update speed becomes a significant

challenge. We solve this by minimizing both the memory footprint on the GPU and

size of data streamed onto the GPU at any time. In addition, we use CPU memory

caching strategies to avoid disk access as much as possible. This involves only loading

the variables and time steps that are actively being displayed into GPU memory. For

example, if a user is only looking at displacement and stress for three instances, only

these data are dynamically loaded on the GPU. However, depending on the CPU mem-

ory size, many time steps may be loaded into CPU memory, allowing for quick update

if a user chooses to animate the instances.

The solid domain data are loaded into GPU memory when the user changes the

displayed variable, the number of visible instances, or the critical times. Only the

selected variable’s values are loaded for each visible instance at the valid time steps,

34

keeping the memory load footprint as low as possible. Each solid domain variable (e.g.,

wall stress) is assigned its own GPU buffer with size equal to the number of critical times

multiplied by the number of FEA nodes and then by the number of components (1 float

for scalar values, 3 for vector values). Although for perceptual reasons, our default

is to view multiple critical times in static juxtaposed views, the visualizations can be

animated by simply swapping data every frame, and this can be done automatically or

interactively using the timeline widget described earlier.

3.4.3 Sampling and Visualizing Fluid Domain Data

The raw fluid domain data are large, but these data are visualized using particles, so a

significant data reduction can be achieved by converting the raw data into pathlines in

a precomputation step. Our implementation uses an accelerated cell location technique,

similar to a CellTree [Garth and Joy 2010] data structure, to precompute path lines

directly from the unstructured grid data using a Fourth Order Runga-Kutta integration

method. A random seeding strategy is used; other seedings, such as targeted seeding in

areas of high vortical structures, would also work.

The specific path lines to draw within each cubby are determined based upon the

time and view. Since path lines inherently encode time; the display for a given critical

time is determined by cropping each line to the portion that lies between the current

critical time and a few moments before (in order to create a streaklet effect).

Bento Box requires rendering to be performed at multiple scales, and this raises an

interesting challenge for drawing path lines. Recall that the path lines are just a visual

representation for the underlying flow field, so when drawing them with a streaklet

geometry, it makes sense to define the size of that geometry (its radius) in cubby-space

units, not data units. Another way of thinking of this is that when zooming in, viewers

do not wish to see a giant streaklet geometry, rather they want to see a more intricate

visual rendering of the flow at that zoomed in scale. To accomplish this, both the size

and density of the streaklets must be defined in cubby-space units.

Empirically, we determined that drawing about 2000 path lines per cubby provides

the right balance for density—enough lines to provide detail to understand the flow and

not so many that occlusion is a problem. This is a simple constant in our algorithm,

and a different value may be easily incorporated to tune to technique for use with other

35

datasest. What should not change from one application to another is the desire to

maintain a constant visual density of path lines per cubby regardless of the scale of the

data represented in that cubby.

To address this, the precomputed single set of randomly seeded path lines for each

data instance is computed for the most-zoomed-in view expected. Then, any zoomed-

out views that require fewer particles are drawn using just a subset of the precomputed

paths; the size of the subset to draw increases as the view zooms into the data. The

specific calculation is as follows. With the constant N as the application-specific desired

visual density of paths per cubby, the number of particles to render, n, for a cubby

displayed with scale factor, s, is

n(s) = N

(
s

sexternal

)3

. (3.4)

The final constant in the equation, sexternal, which is 4.0 for our data, is the scale at

which the visualization transitions from an internal view of the flow data to an external

one. With this formulation, n increases smoothly, randomly adding new path lines to

the scene rendered and ultimately clipped into each cubby, as the view is zoomed in

tighter.

The fluid domain rendering method makes it possible to visualize the flow at any

scale and any critical time from the same pre-calculated data. Thus, changing the

critical time does not use any additional GPU memory or require additional CPU-GPU

memory updates. One path buffer array is stored on the GPU for each data instance

in the display. The buffer is arranged according to a path index and each path has the

same path length. The GPU also stores path value buffers for data variables such as

velocity and pressure that may be used to color the particles.

The comet geometry is defined as an axis-aligned 3D mesh. Since each visualization

will include thousands of these meshes, the mesh is rendered using instancing and de-

formed in a shader to fit within an appropriate start and end position along the path

line. Our implementation uses a mesh with 72 triangles.

36

Figure 3.7: Bento Box arranged for a comparison of cardiac leads with three different
stiffness parameters, increasing in stiffness from left to right. The top row shows
an overview of the dataset. The middle two rows highlight stress on the lead itself,
which appears to increase with stiffer leads. The bottom row zooms in on the
attachment point of the lead in the atrial appendix, showing how in all cases the
flow stagnates near the attachment point. Here, stress on the atrial walls also
appears to increase with stiffer leads.

3.4.4 Expert User Evaluation and User Feedback

Our interdisciplinary collaborators have used Bento Box during several months of iter-

ative development, most recently to analyze the scenarios highlighted in Figure 3.1 and

Figure 3.7–Figure 3.8. The team includes two mechanical engineering researchers and

four computational scientists who also confer regularly with cardiac surgeons and with

engineers in the medical device industry. Several new insights about the data were able

to be made. These observations come from multiple working sessions in the Cave, which

is used regularly for collaborative data analysis by small groups of users. As mentioned

earlier, the application also runs on the HTC Vive, and this has been a useful platform

for portable demonstrations at international conferences and for school groups, industry,

and university alumni; however, users have preferred the Cave for data analysis because

it facilitates collaborative discussion.

Initial observations confirmed the expected spatial positioning of the leads, which

37

Figure 3.8: Bento Box arranged for a comparison of different length cardiac leads.
Lead length increases from left to right. At this timestep in the simulation, the
longest lead length creates a slower flow (i.e., darker red path lines).

was easily judged in VR. The engineers commented that the “drapings” for the leads in

all data instances were appropriate. Looking at cross-sections of the lead by arranging

sub-volumes that cut through the lead like a slicing plane, the engineers also confirmed

that the internal stress pattern has a neutral axis, an expected pattern for a bending

scenario like this one.

Figure 3.7 shows a comparison of data instances with leads of increasing stiffness

from left to right. The second row shows the neutral axis stress pattern mentioned

earlier. The sub-volume was rotated with a NDH gesture so that the front of the

cubbies act as cutting planes, slicing into the finite element data. The third row shows

a top-down perspective of the lead. Here, white indicates high stress. Engineers found

that the highest stress on the lead occurs when the lead is at its stiffest, confirming their

expectation. Conversely, the leftmost situation should have the most displacement. This

was difficult to verify because the displacements are all quite subtle, and a suggestion

was made to include a “motion magnifier” feature in future work to exaggerate any

movement. The fourth row shows the volume of the right atrial appendage near the

attachment point of the lead. This is a region where flow circulation and stagnation can

38

occur and fibrosis develops. Here, engineers noticed that the stress on the atrial wall

near the attachment point is higher (more yellow and less dark red) with stiffer leads.

Figure 3.8 shows a complementary comparison. Here, the focus is on different lead

lengths, which increase from left to right. Some interesting variation in blood flow

within the volume is visible. Engineers noticed that the longest lead produced flow

patterns that appeared slower (darker red) and slightly out of phase with the other

simulations (visible when scrubbing through time). This slowing trend is visible in the

overview in the top row, but it can be seen even more clearly in the next two rows,

which focus on a vortex and an outflow. The wall stress is hidden in these rows, and a

neutral background is used to make it easier to read the color-coded variation. During

the most recent data analysis session, this visual insight prompted several minutes of

follow-on discussion, and the computational scientists hypothesized that the longer stiff

lead might stretch the atrium wall, making the atrium bigger, and that the increased

volume creates a slower overall flow pattern.

In terms of usability, the layout and interface controls made sense to users, who

learned the controls within a first working session. One suggestion for improving the

interface design was made. Users were sometimes confused when translating a sub-

volume relative to a parent volume. Recall, from the discussion in Section 3.3 that this

is supported via a grabbing gesture with the NDH. Users understood the rotational

aspect of this grabbing, but had trouble with the translational aspect. One user told

us that when she was translating she looked not at the sub-volume where her hand was

located but at different row where she could see the location of the sub-volume displayed

as an icon. When the user focuses on the sub-volume’s icon, this breaks the metaphor

of using the hand to grab onto and “move the data” and instead puts the user in the

mindset of grabbing and “moving the selection box”. Unfortunately, this does not work

well in the interface because the translations will be the opposite of what is expected.

The solution is not trivial. The widget is designed so that the boxes are arranged at

fixed locations in space, so it breaks this design if the interface is switched to a mode

of grabbing and moving the boxes. One option to explore in future work is to make

the selection icons themselves objects that may be grabbed and moved with the hand.

Then, if the user wishes to move the object, she simply finds a view where its icon is

visible, grabs it and moves it. Alternatively, if she wishes to move the data, she grabs

39

the data following the metaphor used in the current implementation.

3.4.5 Memory Usage and Rendering Performance

After processing the 39 GB of raw data, the amount of memory needed to accurately

visualize the solid and fluid attributes is over 8 GB, exceeding a 4 GB GPU hardware

limit on our 4-wall cave environment, a 2 processor Intel(R) Xeon(R) CPU E5–2640

@2.50GHz machine with two NVIDIA Quadro K5000 cards and 192 GB of RAM. Since

this machine has more than 8 GB of RAM, it is possible to stream solid attribute

data from memory into the GPU when needed. Streaming combined with the pathline

sampling of the fluid, provides an extremely low memory footprint on the GPU, allowing

us to visualize many instances and variables.

Using this application as a testbed, we also report some rendering performance

measures, summarized in Figure 3.9. These timings were recorded on a 4 core processor

Intel(R) CORE(TM) i7–7700HQ CPU @2.80GHz machine with 16 GB of RAM and a

NVIDIA GeForce GTX 1070 graphics card, which was configured to drive an HTC Vive

with a resolution of 2160 × 1200 pixels. The datasets are streamed into memory from

a 128 GB M.2 PCIe SSD. The scatter plot in Figure 3.9 shows a systematic sampling

of Bento Box configurations that are possible for this 10-instance data ensemble. All

possible grid arrangements (10 × 1, 10 × 2, 10 × 3, 9 × 1, 9 × 2, 9 × 3, etc.) that result in

a total of 40 cubbies or less were sampled. A cutoff of 40 was used since it is reasonable

to assume that beyond this we reach a perceptual limitation in terms of what users can

manage within the visual field. In fact, 20 cubbies is probably a better threshold. Since

we found the rendering performance depends upon the zoom level, multiple samples

at different scales were collected for grid arrangements that involved displaying sub-

volumes. In general, rendering speed decreases as the view is zoomed in, since this

requires rendering more path lines to achieve the same visual density as at zoomed out

views.

The trend is above 30 frames-per-second for Bento Box arrangements of about 20

cubbies or less, and is in the 40–50 frames-per-second range for typical arrangements,

such as for the results pictured in Figure 3.7 and Figure 3.8. In some arrangements

sampled, the frame rates drop below what we would consider a bare minimum for VR

40

Figure 3.9: Rendering frame rates decrease as additional cubbies are added to the
display. Since there are multiple ways to construct a Bento Box (e.g., there are 4
possible arrangements for 10 cubbies 10 × 1, 5 × 2, 2 × 5, 1 × 10), these results are
for a systematic sampling of possible configurations. The trend line is a logarithmic
fit (R2 = 0.76).

environments (about 20 frames-per-second), but these cases are rare in practical use

and have not detracted from analysis tasks using the system.

3.5 Discussion of Limitations and Future Work

There are two key limitations to the Bento Box technique that are worth reiterating.

Although the concept, visual layout, user interface, and general rendering strategy can

be applied to any 3D dataset, this only applies to cases where it is already possible

to render the entire ensemble dataset. In fact, the ensemble needs to be able to be

rendered multiple times per frame, in order to support multiple views at different scales.

41

Our application demonstrates that this is possible to accomplish with a realistic, real-

world, scientifically relevant ensemble, but in practice it takes some work and requires

thinking carefully about how to sample and render the data. Some simpler datasets

(e.g., 3D geometry only with no flow data) would perhaps work without any rendering

optimizations, but many of the ensembles that scientists are interested in studying

today will likely need to be optimized for fast rendering. One goal of reporting this case

study is to provide guidance on how to approach this task, at least for fluid-structure

interaction data.

Another limitation is that Bento Box is not the right technique for large ensembles.

We intentionally describe the technique as designed for ensembles on the order of 10

instances for two reasons. First, rendering is even a bigger challenge for larger ensem-

bles. Second, perceptually, it asks too much of users to try to interpret a juxtaposed

visualization that goes beyond 20–30 “cubbies”.

This leads us to the most important direction for future work. We see great poten-

tial to combine Bento Box with a workflow that includes filtering. In this way, large

ensembles might be able to be interactively filtered down to sets of 5–10 most inter-

esting instances, then these could be explored in VR using Bento Box. This might be

enabled, for example, by adding a linked scatter plot visualization of a dimensionally

reduced view of a large ensemble from which the user could select individual or groups

of instances to add to the Bento Box. Perhaps this could happen at a central control

panel within a virtual room with multiple Bento Boxes created based on specific filters

arranged around the virtual space. The workflow could also be extended in the other

direction, making it possible to dive deeper into individual volumetric data instances to

query specific data values with a probe or place other interactive visualization widgets

directly within the detailed visualizations inside each cubby to access details on demand.

Finally, we now know, since Bento Box helped us to analyze the ensemble, that

the variation within the particular cardiac lead data ensemble developed as part of the

research project is quite subtle, and we are curious to learn how Bento Box would work

in other situations, such as an ensemble where the variation between data instances is

drastic. It would also be interesting to use Bento Box to explore abstract data, like a

3D field of data glyphs. In this case, the rendering optimizations described for FSI data

would not be necessary, but, assuming the data are dense enough that zooming in is

42

required to do detailed analysis of sub-regions, we hypothesize that the core technique

would be just as valuable as it is for medical volume data.

In the future, we plan to conduct additional evaluations of the technique, for ex-

ample, it might be possible to design a formal user study to assess speed and accuracy

in a search and comparison task conducted with Bento Box vs. a standard juxtaposed

or interchangeable (over time) comparative visualization. This would be a significant

undertaking, likely requiring generating a synthetic volumetric ensemble dataset with

features that can be interpreted by non-expert users. It may also be possible to im-

plement a baseline VR or desktop-based visualization that uses an alternative visual

approach to comparison, recruit additional experts with knowledge of cardiac medical

device engineering and fluid analysis, and then design and execute a formal insight-based

evaluation [Saraiya et al. 2005] of the support Bento Box provides for interpreting the

data used in our case study. More generally, Bento Box is a good example of a visu-

alization tool that, in practice, is often used in a collaborative data analysis mode; it

would be interesting to more formally assess the strengths and weaknesses of various

VR platforms (e.g., head-worn display vs. Cave) for this type of analysis.

3.6 Conclusion

VR environments are already effective for visualizing simulation data with complex spa-

tial relationships, such as those presented in this chapter, but only when visualizing a

single data instance at a time. To make VR visualization useful for comparative visual-

ization of a data ensemble, we conclude that new techniques for spatially arranging and

cropping the data are necessary, since these help users focus attention on the most im-

portant 3D and 4D regions of comparison. Such an arrangement is only possible within

VR with the aid of a tightly integrated 3D user interface. The Bento Box technique

addresses both of these needs. Further, the application described here demonstrates

that it is possible to use Bento Box to construct a visualization of a 10-instance, real-

world, scientific data ensemble and provides early indication of the potential impact of

visualizations in this style.

Bento Box is successful at providing an interactive visualization of complex 3D

datasets. The careful selection of colormaps and the custom reframeable views enabled

43

our collaborators to produce imagery that allowed discernment regarding their research

questions. And the fluid bi-manual immersive interface brought a level of interaction

that engaged our participants by making the data accessible in a way it hadn’t been

before.

However, we felt as though we hit a ceiling in this project in the extent to which it

demonstrates the pillars of palpability. Some examples are as follows:

• Discernible: While artfully chosen, our colormaps only allowed us to show one

scalar variable per surface per view, requiring the user to actively change which

variables they were interested in viewing at any one time. It would be valuable

to find ways to increase the visual bandwidth by being able to encode multiple

scalar values on the same surface.

• Discernible: The computer graphics imagery in Bento Box is procedurally gen-

erated from the datasets, and this results in a classically “computer-generated”

appearance. While this isn’t necessarily a problem for focused analysis tasks, it

does lack a strong visual connection with the real-world objects being modeled,

and often requires a significant amount of explanation to new users. Our collab-

orating artist suggests the ability to specify flow glyphs and surface textures that

more effectively communicate the type of data being displayed might prove to be

a beneficial addition.

• Accessible: While we were ultimately able to include our artist’s chosen col-

ormaps, it was not a very fluid process, requiring us to email images of the col-

ormaps back and forth, and re-launch the application to try a new colormap.

Bento Box does not feature an interface for designing and iterating through dif-

ferent colormap concepts.

• Accessible: Since Bento Box was developed for a large VR Cave environment, we

required our collaborators to either come and visit our research lab, or participate

in remote screen-sharing sessions that stripped away all immersion. While we

eventually ported the application to an expensive performance laptop for use with

the HTC Vive, it is still challenging to travel with the system and share the Bento

Box experience with new users.

44

Our exploration of state-of-the-art scientific visualization through Bento Box leads

us to step back and consider how the creative design process might be more natively

supported in our software. The interest and insight of our artist proved extremely

valuable, but there was a notable barrier to her involvement in the design of Bento Box.

By more deeply integrating an artist’s creative process with the design of expressive

scientific visualizations, we expect the visualizations to be more palpable, making the

data more discernible and more accessible.

Chapter 4

Studies in Accessible Design

The artist’s approach to designing immersive experiences

(a) Weather Report (b) Lift-Off

Figure 4.1: Two immersive scientific visualization projects with artist-oriented de-
sign processes. (a) Weather Report, an interactive outdoor art installation which
provides an evocative comparison of objective climate data and participant-driven
subjective memories. (b) Lift-Off, a existing artistic hybrid 2D/3D sketching sys-
tem, applied to visualizing medical data.

45

46

4.0.1 Introduction

To investigate the potential of designing data visualizations with artists in-the-loop, we

look look at two projects that were developed in conjunction with artistic processes.

By taking the time to understand how artists iteratively create experiences, and how

those experiences may be focused on scientific problems, we hope to learn how we would

develop visualization design workflows to better involve artists. This chapter presents

two case-studies, Weather Report and Lift-Off, which each provide insight into different

artistic processes applied to scientific data.

Weather Report [Keefe et al. 2018; Swackhamer et al. 2017] is the result of an

collaboration between architects and computer scientists working together to design

and construct a piece of interactive data-driven sculpture art. Our work is in response

to a 2015 call-to-artists for interactive art installations that explored the idea of climate

crisis to be displayed over one night at an annual art festival held in Minneapolis,

Minnesota. The interdisciplinary team worked together over the course of 6 months

to discuss how we might fuse interactive data visualization with architectural design.

Through an inter-mixed series of brainstorming sessions, concept sketches, site visits,

critiques, and prototypes, we created Weather Report. This chapter, in part, recaps

our collaboration on Weather Report as an example of a design process accessible to

artists, resulting in a visualization which was profoundly accessible to the public. At the

end of this chapter, we will review what makes this interactive installation a palpable

experience.

Lift-Off [Jackson and Keefe 2016] is a pre-existing VR Cave-based modeling applica-

tion from our research lab allowing artists to sketch 2D drawings in the physical world

and import these into the virtual world, using the drawings as starting points for fluidly

constructing 3D sculptures with hand-held tracked styluses. This tool caught the in-

terest of our interdisciplinary team of medical device engineers and computer scientists

who had also collaborated on Bento Box (Chapter 3). We were specifically interested in

exploring how a design tool like Lift-Off could fit into the workflows of designing med-

ical devices and communicating pre-operation information to patients. We approached

and published these applications as case-studies in how workflows designed with artists

in mind could facilitate the creative and expository tasks of medical experts [Johnson

et al. 2016].

47

4.1 Study 1: Weather Report

1 As citizens struggle to understand the scientific language and real-world impacts of

climate change and scientists struggle to recapture trust in data and scientific processes,

how might artists, designers, scientists, and other thought leaders contribute to local

public discussions of climate, and even science and data more broadly? This question,

along with our own human desires to create, brought our design collective of architects,

landscape architects, and computer scientists together to develop an interactive installa-

tion for the Northern Spark dusk-to-dawn, multidisciplinary arts festival in Minneapolis,

MN, USA.

Climate Chaos / Climate Rising

The Northern Spark arts festival is held each year in the Twin Cities and has grown to

attract tens of thousands of people who view performances, explore temporary installa-

tions in the streets and along the riverfront, and gather for one night to experience art as

a community until the sun rises. In 2016, artists were asked in an open call to interpret

the theme of “Climate Chaos / Climate Rising” through “the creation and presentation

of art in the public sphere, focusing on innovative uses of technology, old and new, to

imagine new interactions between audience, artwork and place, explore expanded possi-

bilities for civic engagement, and encourage pluralistic community” [NorthernLights.mn

2016].

Art, Design, Science, & Technology

Our design collective, MINN LAB, approached this challenge by fusing our plurality of

design voices into a vision of a data-driven nighttime experience with local weather data.

We identified common themes around the experience we wished to create: making cli-

mate personal and connecting objective scientific data to subjective human experiences.

Then, over the course of months of interdisciplinary design and discussion, we devel-

oped, interpreted, and revised these themes through the lenses of our different technical

1This section is based on work published in IEEE Computer Graphics and Applications [Keefe et al.
2018].

48

Figure 4.2: Visitors walk through a tunnel of animated “balloon pixels” that depict
4.5 decades of local weather data constructed from both objective measurements
(right wall in this view) and the subjective memories of visitors (left wall).

research interests: for the architects, understanding the role of data in the built envi-

ronment, and for the computer scientists, imagining a future of data visualization based

on embodied experiences and physicality. The result is Weather Report (Figure 4.2), a

human-scale, visualization tunnel that contrasts 4.5 decades of objective local weather

data with the subjective weather-related memories of visitors.

4.1.1 Weather Report Concept

Weather Report uses local, human experiences with weather as an entry point for dis-

cussing the difference between objective weather data and subjective interpretations

and memories. Although the data visualized are on the human timescale (45 years

of objective data and memories), the objective-subjective comparisons the piece asks

visitors to make speak to the broader question of how the earth’s climate has shifted

over a much larger period of time, how this is measured and interpreted today, and how

rigorous scientific processes differ from everyday discussions of weather.

Scientists often struggle to explain the objective basis for climate change, what it

means to the average citizen, and the grand timescale on which it operates. In contrast,

49

our friends and family have no trouble at all explaining everyday human experiences

with weather and extrapolating from these: On the day you were born, there was an

amazing blizzard, it took me four hours to shovel the car out of the driveway; that used

to happen all the time, but we don’t have storms like that anymore. Or, just as common,

we have never had a winter with so many violent storms in a row; grandpa had to buy a

generator because the power kept going off; this year is the worst ever. Weather Report

asks visitors, which of these weather memories is true? How do human experiences and

memories compare with objective data? How do human timescale data points relate

to the much larger climate timescale, and how do scientists objectively measure those

data?

Getting Physical

Inspired by the role weather balloons play in data collection, we came to view the

balloon as a simple, physical, relatable manifestation of the scientific process. Each

weather balloon provides a small data-driven contribution to the larger picture of the

science. Reinterpreting this in the context of an experiential display of data, we reasoned

that balloons could function as physical “pixels”, changing appearance in response to

individual data readings and collectively presenting a broad picture of the scientific

data.

The balloon-as-pixel concept could have many interpretations, and this fueled a rich,

several month-long period of sketching and ideation within the team. Drawing upon

the architectural tradition, the site for the installation was critical in the design. Mill

City Ruins Park is located along the Mississippi River, near the Stone Arch Bridge in

Minneapolis. One of the prominent features of the park is a walking path that follows the

river. Thus, we were inspired to create a walk-though experience – something viewers

could experience and touch as they traversed the path.

The method for illuminating or otherwise adjusting the balloon pixels in response to

data also required design. We experimented with balloons on strings with motors and

internal LEDs but found that the best visual results could be achieved by projecting

colored light onto the balloons. The light is transmitted through the balloon, which

creates the effect of a glowing orb.

50

Figure 4.3: A tunnel of balloon pixels along the walking path in Mill Ruins Park,
Minneapolis, MN.

Contrasting Views of Weather

The final design arranges the balloons into two walls that form a tunnel around the

walking path (Figure 4.3). Each wall is made from a 12x36 grid of balloon pixels.

This mirrored walls arrangement establishes a strong physical framework for visual and

body-centric comparison of the data visualized on the two sides of the path, and this

serves as the basis for addressing the key theme of the work, contrasting objective and

subjective views of data. One view is assigned to each wall.

The wall next to the river visualizes objective local weather data, recorded at the

US Weather Station KMSP located at the Minneapolis - St. Paul International Airport.

A dataset was created based upon hourly temperature, wind speed, and precipitation

(rain and snow) readings from 12AM on January 1st 1960 to 7:00 AM on June 11th

2016. In all, the objective data include approximately 4.5 decades of hourly readings

for these four variables.

The wall next to the grassy hill visualizes subjective data. Visitors populate this

dataset based on their subjective, weather-related memories, which are entered into the

Weather Report database using an interactive multi-touch kiosk positioned along the

walking path near the entrance to the tunnel. The subjective dataset contains the same

variables as the objective dataset but is much sparser. Over the course of the night,

visitors fill in this subjective weather record, and the visualization interpolates between

51

Figure 4.4: The data-to-visual mapping for each wall uses a hierarchical arrange-
ment for time, decades are displayed in the two leftmost columns, with the current
decade highlighted, followed by months of the year with the current month high-
lighted, followed by days of the month, and so on. The display animates to display
the entire six decades of data over the course of the night.

each data point to fill in the gaps.

4.1.2 Visualization and Interaction Design

The visualization is designed be experienced. The visual mapping is accurate, making

creative use of hierarchy, time-window averaging, and animation to (over time) present

all of the multi-decade, multi-variable data using only the available 12x36 pixels; how-

ever, the primary goal is to evoke a sense of being present with the data rather than

an accurate scientific analysis. The same mapping is used for each wall so that at any

point the color of a balloon on the objective wall may be compared to its partner on

the subjective wall.

Mapping Temperature Data to Balloon Walls

The balloon pixels are organized into a hierarchical time grid, as illustrated in Figure 4.4

where each balloon visualizes data within a certain time window. In the leftmost two

columns, the time windows are the largest, covering entire decades of data. Then, the

time windows get progressively smaller moving from left to right.

52

Figure 4.5: Two frames from an animated blue rain effect temporarily superimposed
over the objective weather wall.

Since the display is animated, the visualization maintains a “current time”, which

is a single hour within the dataset. The balloons corresponding to this hour are always

drawn with a white highlight. Note that there are always several such balloons due to

the hierarchical arrangement – the current hour is highlighted on the far right, and the

current day, month, and decade that contain this hour are also highlighted within the

other sections of the display. Figure 4.4 shows the highlighting for 7am on Tuesday,

June 24th, 2016 as an example.

The color of each balloon is defined using a warm to cool color map based on tem-

perature data. Temperatures are averaged within the time windows, so that a balloon

corresponding to a day-long time window displays the average temperature for that day,

balloons corresponding to a decade show the average temperature for that decade, and

so on.

Animated Effects for Secondary Data Variables

In addition to the primary variable of temperature, secondary data variables (rain,

snow, wind speed, and cloud cover) are also included in the visualization, but these

use a different visual mapping. The secondary variables are treated as discrete weather

“events”. An event is present at a given time in the dataset if the rain, snow, wind

53

Figure 4.6: Visitors enter weather memories using a three-stage, multi-touch inter-
face on a kiosk.

speed, or cloud cover exceed a threshold. When the animation’s “current time” reaches

an hour that includes one or more weather events, an animated weather effect is applied

to the visualization.

These animated effects are special in that they do not operate on a single pixel but

rather “take over” the entire display. Whenever a weather event is encountered in the

data, a three-second effect is added to the animation queue. For a rain event, blue pixels

stream down the wall. Snow events create slower, gentler white pixels wafting down the

wall. Cloud-cover events tint the top of the wall light gray, and wind events cause gray

particles to fly across the wall from one side to the other. The effects are rendered as a

semi-transparent overlay as shown in Figure 4.5.

The Subjective Weather Record

Visitors to Weather Report create the subjective weather dataset themselves by entering

weather-related memories using a multi-touch kiosk located along the walking path, near

the entrance to the tunnel. The user interface is pictured in Figure 5 and is designed

54

Figure 4.7: Thousands of visitors experienced Weather Report at Northern Spark

to also serve as a teaching tool – visitors learn the data mapping illustrated in Figure 3

by using the balloon wall graphic as the interface for entering the date of their weather

memory (Figure 4.6, upper-right). A specific hour for the memory is entered by selecting

the decade, then year, then month, then day, and finally hour. Then, the temperature,

rain, snow, wind speed, and cloud cover are entered using sliders with extremes labeled

in relative, not numeric terms (e.g., the hottest day ever vs. the coldest day ever)

(Figure 4.6, lower-left). Finally, visitors act out their weather memory, using the multi-

touch screen to create an animation (Figure 4.6, lower-right).

Similar to the animated effects for secondary data variables, these weather memory

animations are replayed as graphic overlays immediately after entering the memory and

again whenever the animation reaches the time associated with the memory.

Illuminating the Balloon Pixels

The balloons are lit from outside the tunnel by four 5000 lumen short-throw projectors.

The projectors are fed real-time images of brightly colored ellipses (as in Figure 4.3)

that align with the physical balloons.

In the Mill Ruins site, the tunnel is tightly pressed from both sides by a river and

a steep hill (with sometimes less than 6 feet of margin), so the projectors cannot be

positioned to allow for a perpendicular throw – instead, the riverside projectors must

be placed off-axis, beyond each end of the tunnel (as seen on the right edge of Figure 6,

left), and the hillside projectors are placed above the tunnel along the incline (the two

lights seen above the wall in Figure 4.7, left).

55

A custom image-warping process is used to accommodate these extreme angles. The

hillside projectors each illuminate about half of the subjective wall, while the riverside

projectors each reach the entire objective wall from grazing angles. The custom software

makes it possible to interactively specify anchor points using keyboard commands on-

site to carefully align the projected ellipses with the balloons.

4.1.3 Observations, Surprises, and Reflections

Thousands of visitors experienced Weather Report at Northern Spark (Figure 4.7), and

more than 200 contributed memories to the subjective weather record. The earliest

entry was for Dec. 13, 1961. There were 22 entries for the Halloween Blizzard of 1991.

The biggest surprise was in how viewers reacted to the projection. As designers, we

treated the projection as simply a behind-the-curtain technology – the technology that

just happened to provide the best method of illuminating the balloons. To our surprise,

the projection beams became interactive play areas, places for visitors to dance, pose

for pictures with data covering their bodies, and cast shadows on the data that could

be seen from across the river and around the festival. Visually, this added another layer

of human connection and embodied movement to the data-driven visuals.

Interdisciplinary collaborative design processes are both rewarding and challenging.

Our experience and results reflect months of discussion, much of it devoted to learning

to speak the language of each other’s disciplines. The design also reflects push and pull

and compromise. The whole team had to work within the constraints of an outdoor,

dusk-to-dawn festival and each discipline had to stretch to accommodate the interests

and expertise of the other. This process led to a unique result, one that no individual

on the team would have created. It also led to new thinking that broadens and refuels

our primary disciplines.

This is one of the powerful recurrent themes in the work highlighted in this study.

This team continued to collaborate as an interdisciplinary collective for another similar

project, and even as we returned to our primary disciplines we brought new knowledge

with us that impacts our future work. Architects have learned to become a little bit

more like computer scientists and now have a foundation for further explorations of

data and science in the built environment. Computer scientists have learned to become

a little bit more like architects and now have a foundation for further explorations of

56

embodied experiences and physicality in data visualization. Computer graphics and

visualization researchers will connect this work to the emerging research theme of “data

physicalization” [Jansen et al. 2015]. This is a topic where the computer science com-

munity has much to learn from architects, designers, and artists. Collaborations like

this one make it possible to explore concepts of data in physical space at a scale that is

simply impossible in a traditional computer science context.

4.2 Study 2: Lift-Off for Medicine

2 When designing a visualization for accessibility, it is hard to beat the accessibility of

the physical world, both for construction and presentation. In Weather Report, we saw

how accessible the design of an experience is when artists can work in the processes

with which they are most familiar, and how accessible an experience itself is when it

can be touched and walked around. In this section, we take our insights from Weather

Report and apply them to a virtual design space for scientific tasks.

4.2.1 Introduction

Society has benefited greatly from recent advances in medical imaging and data-driven

design of medical devices. However, the ability to design, analyze, interpret, and com-

municate about medical data remains a challenge. We believe that by combining virtual

reality interfaces with creative data-intensive work-flows, new immersive analytic tools

can address this challenge.

In this section, we present two application case studies showing how hybrid 2D/3D

sketch-based interfaces in VR, specifically interfaces from the recent Lift-Off immersive

modeling system [Jackson and Keefe 2016], can be used to support immersive analytics

in the medical domain. Lift-Off (Figure 4.8) allows a user to position 2D imagery within

a 3D virtual environment shown in a VR Cave. The user can lift 2D contours out of

the imagery into 3D space to create a wire-frame network of rails. Surfaces can then be

swept along the rails creating a 3D model with precise control.

2This section is based on work published in the Proceedings of the 2016 ACM Companion on Inter-
active Surfaces and Spaces [Johnson et al. 2016].

57

(a) Start with sketches on paper. (b) Scan and place in 3D space.

(c) Select edges of interest. (d) Lift these curves into 3D.

(e) Adjust depth along the curve. (f) Sweep surfaces along curves.

Figure 4.8: The process of designing from a sketch in Lift-Off.

58

The first application explores how immersive 3D modeling based on 2D X-ray imag-

ing can be used to analyze and explain bone fractures to patients before receiving care.

The second application explores how creating a VR scale model of a medical device

from early 2D sketches might facilitate a new style of engineering design for medical

devices. Both case studies were developed by our interdisciplinary team of medical de-

vice engineers, computer scientists, and a physician. Based on these experiences, we

argue that hybrid 2D/3D interfaces that support new creative output in addition to vi-

sualization are critical for the development of immersive visual analytic tools. (A video

demonstrating this system can be found at: https://youtu.be/taTwUWYh4jw)

Our main contributions are:

• A case study of combining a hybrid 2D/3D sketch-based interface with medi-

cal imaging data to support surgical intervention for bone fractures and increase

physician/patient communication.

• A case study of combining a hybrid 2D/3D sketch-based interface with hand-drawn

2D sketches on paper to support designing new medical devices in an immersive

spatial context.

• A discussion of challenges for the medical domain as a fertile application area for

immersive analytics.

4.2.2 Related Work

Medical Analytics and Visualization in VR

Medicine has always been an important driving application area for immersive visual-

ization and analytics. Immersive environments have been created to help scientists and

physicians analyze computational simulations of blood flow [Van Dam et al. 2000], un-

derstand the structure of the brain [Zhang et al. 2004], and plan and train for surgical

procedures [Satava 1993]. Now, as immersive technologies have become dramatically

more accessible and affordable, there is an opportunity to do much more. Our first

case study explores the potential of using VR not as an analytical tool for only the

most complex neuroscience surgical intervention, but rather for the everyday task of

a physician working together with a patient, helping the patient (or medical resident)

59

to reason in 3D about why a procedure is necessary. In the future, we also envision a

dramatically increased role for interaction relative to prior work in immersive medical

analytics. Our second case study explores the potential of immersive environments that

are not just for interactive visualization of existing datasets but also for creating data

(i.e., designing, 3D modeling).

Sketch-Based Modeling and Annotation in VR

Early work in sketch-based modeling tools for VR includes the 3DM system [Butter-

worth et al. 1992] which supported the creation of 3D surfaces by sweeping a tracked

six degrees-of-freedom stylus through space. This was followed by Holosketch [Deering

1995] and many others. In general, 3D sketching in VR has been embraced for its im-

mediacy and the ease with which even novice users are able to create complex models.

However, user feedback shows that unconstrained 3D input is difficult to control. The

Lift-Off modeling system [Jackson and Keefe 2016] avoids much of this issue by intro-

ducing constraints from hand-drawn 2D sketches (Figure 4.8). In addition to modeling,

freehand sketch-based systems have been used to annotate and describe scientific data.

Keefe et al. explored how to prototype scientific visualizations using sketched 3D in-

put [2008]. Nowinski et al. studied surgeons’ ability to annotate vasculature structures

in VR for surgical planning [1997]. We believe incorporating engaging, full-body, ges-

tural interfaces in these styles into immersive data visualizations is the thing that is

needed to create a next generation of successful immersive data analytics tools.

4.2.3 Application 1: Annotation of Medical Data

Physicians need to quickly and reliably translate medical information to patients and

their family members, and this often involves translating concepts captured in 2D im-

agery or other data to the 3D context of a patients body.

Prior work with Lift-Off has focused on translating artist-defined 2D line-sketches

into 3D virtual models for architecture and sculpture art, but we reasoned that a sim-

ilar hybrid 2D/3D interface might also be useful for physicians to facilitate patients’

comprehension of medical imaging data.

60

(a) Starting with a standard X-ray image (b) Applying an edge-detection filter

(c) Users place these data images as slides in 3D space and then “Lift-Off” curves to construct
3D models and annotations

Figure 4.9: 2D medical data can be converted to line images for use with Lift-
Off. Data credit: X-ray image used through Creative Commons from Majorkev on
Wikipedia https://creativecommons.org/licenses/by/3.0/.)

61

Methods and Results

To test this potential, we developed an example use case based on the concept of trans-

lating the 2D medical data captured in a patient’s X-ray to a 3D context that might be

more easily understandable to the patient. We considered the case of a broken clavicle

bone. Figure 4.9(a) shows the original digital X-ray image, and Figure 4.9(b) shows the

same image after applying the simple edge-detection filter built into the Lift-Off tool.

Together these images are placed (like floating slides) in 3D space within VR, and they

serve as the data context for 3D illustrations and annotations. Figure 4.9(c) shows how

construction lines were selected from the edge data and pulled out from the image to a

user-defined depth to construct the anatomy relevant to the discussion.

To illustrate this specific medical example, we lifted out geometry for a section of

the sternum, the first and second rib, the broken clavicle, a section of the scapula, and a

section of the humerus. Several views of the 3D scene this process generated are shown

in Figure 4.10. This particular model took an experienced user (the first author) about

1 hour to construct in Lift-Off.

Observations and Feedback

Our interdisciplinary team generated several observations from this experience, and

we recorded feedback from the physician on the team as he engaged with the tool to

demonstrate how he might use it to better communicate with a patient or resident

(Figure 4.11).

One of our first observations was a surprise. The physician’s first step was not to

discuss the break in the bone specifically; rather, he began decisively sketching areas

of concern near the fracture such as blood vessels, explaining that the bone fragments

could cause further internal damage if not treated, a danger he indicated was critically

important for the patient to understand in order to pursue appropriate treatment. In-

terestingly, this is precisely the type of 3D context that is not visible on the 2D X-ray

image; here, it was only made visible with the new ability to sketch in 3D around the

data-driven context provided by the X-ray image positioned in space.

We also noted the feedback that this clavicle fracture case is perhaps a bit too

simplistic to convey the real need for a tool in this style. For example, a more compelling

62

(a) (b)

(c) (d)

Figure 4.10: A complete 3D model of the broken clavicle from two angles. Shown
both with ((a), (c)) and without ((b), (d)) the design scaffolding.

63

Figure 4.11: Using immersive data-driven 3D annotations to explain treatment
options.

example of the need for communication might involve broken ribs in elderly patients –

here, it can be difficult to convey to the patient the need for careful supervision in a

setting where the patient can remain still, breathing deeply for a consistent period of

time so as to avoid developing pneumonia. He went on to demonstrate how he would

describe an even more complicated condition, pancreatic cancer, using freehand 3D

sketching to create a diagram in the air showing the pancreas and surrounding organs

and adding arrows as annotations while describing the treatment process.

The primary conclusion from our observations is that these situations would benefit

from a virtual 3D white-board that allows physicians to draw as they talk in the con-

text of both 2D images and 3D anatomy. This would enable physicians to annotate the

3D reconstruction, describing procedural and securement methods and identifying im-

plant locations. The current case study succeeded to a degree in making this possible.

However, there were also some shortcomings. The physician noted that while physi-

cians would likely not want to take the time to actually model the contextual bones

and anatomy in practice, they would make extensive use of the ability to sketch 3D

diagrams in the context of generic 3D anatomy and 2D medical images. We interpret

64

this as a need to extend the data visualization supported in our prototype, currently

limited to just 2D medical imagery, to 3D visualizations that include surface and per-

haps even volumetric models for organs and other structures. Imagine, for example,

performing the type of annotation and modeling described here within the context of a

state-of-the-art 3D visualization of neural fiber tracks visualized in VR.

4.2.4 Application 2: Immersive Medical Device Design

Medical device design is a collaborative process. Designers need to conceptualize ideas

for new medical devices and relay those concepts to engineers for further refinement and

prototyping. This often starts on paper, but because the 3D complexity of these models

can be so high, the process then often quickly moves to computer-aided design (CAD).

One of the limitations of this quick transition to CAD tools is that once we move to a

CAD model, with precise geometry, constraints, etc., we lose much of the quick, creative,

and exploratory benefits of sketching. On the other hand, it is clear that traditional 2D

sketching can only go so far, particularly when we consider designing medical devices

with complex geometries that might be inserted within the human anatomy.

Methods and Results

To demonstrate how Lift-Off can be used in the medical device development process,

we made several sketches on paper to capture ideas for a table-based robotic surgery

device that our interdisciplinary team had been discussing for several weeks as part of

another project. Working from one of the sketches, we created a full 3D model (i.e., a

virtual 3D sketch) of the device in VR (Figure 4.8).

In this specific example, a successful design must be able to robotically control

the position and orientation of a laser relative to the patient’s head while the patient

lies on an operating table. Precise positioning is required, and the design must also

address several spatial constraints, such as room for the medical staff to work, room

to transfer the patient on and off the table, and room for the surrounding equipment

in the operating room. The design can be modified at real-life scale inside VR, and

variations can be explored. For example, Figure 4.12 shows three variations for the

hinging mechanism. All three of these designs were created based on the same 2D

sketch by using free-hand 3D sketching and brainstorming. The first model took an

65

(a)

(b)

(c)

Figure 4.12: Three variants of the robotic mechanism, sketched in the 3D immersive
environment.

66

Figure 4.13: Critique of the robotic surgery device sketches can occur directly in
the immersive environment.

experienced user (the first author) about 1 hour to construct, and each variation took

an additional 15 minutes.

Observations and Feedback

The medical device engineers on our team evaluated this process and provided insights

as the process moved from conference room ideation and sketching on whiteboards and

paper to VR, where critique focused on the 1:1 scale 3D model shown in Figure 4.13.

An observation we made was how the approach to discussing the device changed

when one of our medical device engineers encountered the virtual prototype. First, upon

entering the immersive environment, the engineer appeared energized as compared to

the conference room discussion. When another member of our team noticed that our

system did not actually allow the different parts to move relative to each other, he

took the opportunity to draw arrows in the air around the virtual prototype to indicate

the degrees of rotational freedom of the multiple moving parts. Interestingly, these 3D

67

arrows showed movement that would be difficult to visualize together on a 2D sketch.

When asked to reflect on the design variations of a particular hinging mechanism

(Figure 4.12), one engineer commented on possible implementations involving four-bar

linkages and sliding systems with clamps that could be powered by hydraulics. Before

the sketch and virtual prototype were developed, this hinging mechanism had not even

been discussed. While in the cave, members of our team stood at different positions

around the virtual prototype to see how the various components might get in the way

of potential surgical operations.

Our conclusion from our observations is that putting people in a 3D space with a life-

size and life-like virtual prototype facilitates discussion and allows for considerations of

implementation and spatial constraints. All design decisions can be made with attention

to scale and functionality within the surrounding environment. Without a hybrid 2D/3D

VR tool, these sorts of discussions and considerations would be inhibited until a physical

prototype could be produced. However, there are also shortcomings to using Lift-Off

over physically prototyping, such as the inability to physically interact with the virtual

prototype or to move individual parts.

Although this particular case study focused on a large-scale medical device, our team

members also work regularly with smaller scale and implantable devices (e.g., replace-

ment heart valves, cardiac leads, drug delivery systems). This is an area where we think

the interfaces described here can be combined with data-rich immersive visualizations

to create immersive analytics systems that are powerful. Imagine, for example, the style

of collaborative 3D design and sketching described here coupled with the style of immer-

sive visualizations of blood flow through the heart mentioned earlier when discussing

related work.

4.3 Conclusions

4.3.1 Weather Report

Our work on Weather Report resulted in a deeply accessible visualization, engaging

over a thousand visitors in one night. Some people only walked between the walls on

their way by, some took the time to contribute their own data, and some stayed for

long while just taking in the display (Figure 4.14). Not only could participants reach

68

Figure 4.14: Weather Report drew in visitors to not only experience a visualization
of climate data, but reconsider their subjective understanding of climate as it relates
to objective information.

out and touch the balloons making up the walls, but they could use their fingers to

literally draw their contributions before seeing their input displayed larger-than-life on

the subjective wall.

In terms of palpability, this visualization is one of the most accessible works in this

dissertation. This can be credited to the involvement of our team of architects, who

have dedicated their careers to designing physical spaces that engage the people who

inhabit them. We can also consider the high level of access our designers had to the

visualization design process. There were minimal barriers to the architects exercising

their design training during the development of Weather Report, simply because the

result was undeniably an architectural accomplishment. Contrast this with what would

have happened if we were primarily designing a piece of visualization software. While our

artistic collaborators may have had valuable insight for us, and may have been helpful

in the brainstorming, it would not have been in their domain of expertise and in the end

we as software engineers would need have needed to re-synthesize our interpretation of

their ideas anyways. This motivates us to find ways in other projects to enable our non-

programming collaborators to play to their strengths, and incorporate design elements

69

that are native to their domain.

However, Weather Report shows its weakness when it comes to discernibility. While

it successfully encodes hourly temperature data across 6 decades and engagingly rep-

resents hundreds of user-contributed memories, the actual insights that can be made

from the display are far more conceptual than they are analytical. The exact encoding

is lengthy to explain, and easy to forget when confronted with the glowing array of an-

imated balloons. This is a combination of the inherently low-resolution of the display,

and the single channel of visual encoding – color – like we discussed regarding Bento

Box in the previous chapter. While we don’t consider this to be a failure for Weather

Report itself, we do see this as an area for improvement as we continue to explore pal-

pable visualizations. In Chapter 5, we will reconsider ways more data can be expressed

at once in a scientific visualization of many variables.

4.3.2 Lift-Off

Moving onward in our investigation of creative workflows, we wanted to consider how to

further leverage physical creative processes in our interactive software. In the first study,

we performed most of our design work in the architectural domain, taking full advantage

of their creative design workflows. In Lift-Off, we examined a software-based approach

to creative design, while still integrating a physical creative process of sketching ideas

on paper.

In the this second study, we explored the potential of using a 2D/3D hybrid user

interface to sketch on top of medical imaging data, not just as a way to plan a high-

end surgery (although this could certainly be useful) but as a way to even perform the

much more common task of explaining a medical procedure to a patient. Similarly,

we explored the potential of using a VR system as a 3D sketchpad for medical device

engineers to create new device prototypes in immersive environments. We believe the

two most successful elements of these case studies are: (1) the freedom to sketch and

create new 3D data with reference to a data visualization rather than simply providing

interactive techniques to explore a preexisting dataset, and (2) the ability to link one’s

prior experience with 2D data (or even physical sketches on paper prepared outside of

VR) to the new immersive 3D environments in which people will work in the future.

70

With Lift-Off, we can demonstrate that a design process beginning in the physical

world makes design tasks accessible not only to artists, but to anyone who has spent

their life wielding a pen and paper for sketching. And when a design is displayed as an

immersive environment that supports natural annotation, it also provides accessibility

for new collaborative insights. When considered along side Weather Report, these two

works reinforce our idea that integrating a physical creative process increases the over-all

accessibility of our data visualizations.

4.4 Conclusion

Both of these examples only begin to scratch the surface of the potential discernibility of

artist-supported palpable visualizations. This is primarily due to the fact that neither

Weather Report nor our applications of Lift-Off were working with complex multi-variate

datasets. But looking back at our collaboration with an artist during Bento Box back

in Chapter 3, we saw that the limitation of expressiveness was not due to any shortage

of inspiration on the artist’s side, but rather in the simplicity of our own rendering

techniques. As we move forward, we re-imagine how to develop visualization design

software to leverage an artist’s creativity in not only the spatial design of a data-driven

experience, but also in the very data encodings themselves.

Chapter 5

A Theory and Implementation

of Artifact-Based Rendering

for Scientific Visualization

Harnessing Natural & Traditional Visual Media for Expressive 3D Vis

5.1 Introduction

1 As we saw with our ensemble of volumetric simulation data in Chapter 3, designing

a visualization that encodes multiple variables in a discernible way is a hard problem

that can pique an artist’s interest.

Through our exploration of creative design projects in Chapter 4, we learned that

providing workflows that are accessible to the creative workflows of artists and design-

ers can result in experiences that are more accessible to viewers than the traditional

development of scientific visualizations.

Our key take-aways from this study are as follows:

• There are many potential contributions to be made by artists and designers to the

study of visually encoding data

1This chapter is based on work published in IEEE Transactions on Visualization and Computer
Graphics [Johnson et al. 2019b].

71

72

Figure 5.1: Using traditional physical artistic media as input to the digital visual-
ization pipeline provides a richer visual vocabulary and opens the door for artists
to participate in creating more expressive and engaging 3D scientific visualizations.
This example helps scientists understand commercially viable macroalgae growth
in the Gulf of Mexico by encoding temperature and salinity from remote sensing
together with eddy direction and curvature and three nitrate concentrations from
computational simulation.

• Existing visualization tools and workflows do not lend themselves to artist involve-

ment

• Design is often most naturally begun using physical media and iterative processes

• The expressiveness of our visualizations to visually encode many attributes at once

is limited by our rendering techniques and not on the creativity of a designer

• Visualizations based in the physical world are engaging to participants

We flesh out these points over this chapter and the next, describing our new approach

to designing visualizations based on physical artifacts designed by artists for encoding

multi-variate volumetric datasets called Artifact-Based Rendering (ABR) [Johnson et al.

2019b].2 In this chapter, we walk through the theory and implementation of our ABR

visualization design system. and in Chapter 6, we show how ABR can be applied to a

2Acknowledgements: This research was supported in part by the National Science Foundation (IIS-
1704604 IIS-1704904). Brain microstructure applications were supported in part by the National
Institutes of Health (P41 EB015894, P30 NS076408). MPAS-O simulations were conducted by Mathew
E. Maltrud and Riley X. Brady as part of the Energy Exascale Earth System Model (E3SM) project,
funded by the U.S. Department of Energy (DOE), Office of Science, Office of Biological and Environmen-
tal Research with analyses conducted by PJW, MEM, and RXB under ARPA-E Funding Opportunity
No. DE-FOA-0001726, MARINER Award 17/CJ000/09/01, Pacific Northwest National Laboratory,
prime recipient.

73

number of different datasets, and how we’ve thus far evaluated its usefulness to artists

and scientists.

Finding inspiration in our physical world, combining disparate objects in new ways,

understanding through hands-on making — for centuries these “low-tech”, physical pro-

cesses have helped us (scientists, artists, architects, doctors, engineers) to investigate,

reinterpret, and ultimately make sense of our world. Visualization, particularly in im-

mersive environments such as virtual or augmented reality (VR or AR), promises a

similar, more physical, perhaps even innately human approach to making sense of to-

day’s complex data. Yet, current computer-based visualizations fall short of realizing

many of the benefits of more traditional, time-tested, physical sense-making processes.

We highlight three specific challenge problems for the future of scientific visualiza-

tion:

Challenge 1. Supporting traditional visual designers and design processes, such as

those taught in art and design disciplines. Here,“supporting” means, in part, creating

new visualization design tools that make it possible for non-programmers to rapidly

design and critique many alternative data-to-visual mappings.

Challenge 2. Expanding the visual vocabulary used in visualizations in order

to depict increasingly complex multivariate data. The consistent computer-generated

aesthetic found throughout our conference proceedings is becoming well refined, but it

is in sharp contrast to the much larger visual variety we find when walking the halls of a

museum or even walking through the woods. Is it possible that our visual vocabulary is

converging upon a local, rather than global, maximum? We ask, to what extent might

a richer visual vocabulary increase overall expressiveness, with new visual encodings or

new combinations of encodings conveying additional or more complex data?

Challenge 3. Bringing a more engaging, natural, and human-relatable handcrafted

aesthetic to data visualization. We live in a time when there is a great disconnect

between the scientific community and “lay people”. Scientists struggle to tell their

stories. In theory, visualization should be the most powerful tool scientists have to

communicate with each other and the public, but the disconnect persists. Thus, we ask,

how might even the methods we choose to depict scientific data reaffirm the natural,

human connection to all aspects of science?

74

In formulating Challenge 3, we have closely followed recent research in data physical-

ization [Alexander et al. 2015; Djavaherpour et al. 2017; Khot et al. 2014; Taylor et al.

2015]. Benefits of data representations that are physical, real-world objects rather than

purely digital representations include the potential to use multi-sensory perception and

dual encodings to increase data legibility [Hogan and Hornecker 2016]. The potential

benefits also include increased engagement and emotional connection with data [Jansen

et al. 2015]. Imagine touching a physical, data-driven melting ice sculpture depicting in

physical form how the terminus of Grewingk Glacier has receded over 150 years [Sengal

2015], and compare this to a typical online map-based visualization of the same data.

Certainly a map will be better for some data analysis tasks, but the scientific commu-

nity cannot dismiss the sculptural visualization. Cognitive science demonstrates that

humans are innately compelled to touch and examine some physical objects [Klatzky

and Peck 2012]. We engage and connect with natural, physical forms, especially when

there is evidence of the human hand in them. Thus, a physical ice sculpture can be just

as valuable to science and society as a finely crafted digital map and, perhaps, more

impactful in the actions it inspires.

Our work seeks to extend physicalization techniques by introducing an inverse prob-

lem relative to what has been studied thus far, namely, using physicalization as an input

to the visualization pipeline rather than just an output. We reason that the resulting,

often handcrafted, aesthetic can have many benefits, including highlighting the human

connection to the data. In a sense, this approach could mimic for 3D scientific data the

hand-drawn 2D aesthetic Georgia Lupi has leveraged so effectively to advance her work

on “data humanism” [2017].

Our work also closely follows research in visualization design tools, particularly those

supporting artists’ contribution to scientific visualization, which inspires Challenges 1

and 2. In the tradition of the “renaissance teams” introduced by Donna Cox [1988], our

interdisciplinary team includes computer scientists, domain scientists, and a tradition-

ally trained artist. Without new tools, it has been impossible to translate the multitude

of stunning visual design ideas developed by the artist using traditional media (e.g.,

paper, ink, clay, wax) into 3D data-driven visualizations. Prior software systems and

design processes have identified and addressed this same problem but incompletely. Sci-

entific Sketching supports artists prototyping 3D visuliazations in VR, but not in a

75

data-driven way [Keefe et al. 2008]. Vis-by-Sketching supports artists in data-driven

prototyping, but only for 2D spatial datasets [Schroeder and Keefe 2016]. Our work is

the next logical progression, extending to support rapid data-driven 3D visualization

design and prototyping.

The major novel idea in this work is, therefore, to introduce a decidedly human,

physical approach to crafting data visualizations by working with artists and the tradi-

tional media that they can so powerfully control (Figure 5.1). We demonstrate how all

major visual elements of 3D multivariate scientific visualizations (color, line, texture,

and form) can be derived from physical artifacts designed and crafted or even found

in nature by these artists. Further, with a custom rendering engine, the artifacts can

respond dynamically to data to produce complete, accurate, data-driven interactive vi-

sualizations. We call the framework of tools, algorithms, and processes that comprise

this idea Artifact-Based Rendering (ABR).

The framework serves as a visualization design tool, but, to reiterate, the goal is

not as simple as producing only efficient, effective solutions. A key anticipated benefit

of ABR is opening the field to a more diverse group of visual designers who might

contribute radically more effective solutions that have not yet been discovered. Since

the foundation of creativity and design in traditional artistic fields is rapid exploration

of alternatives (e.g., think sketching [Buxton 2010]); it follows that a key requirement

for the framework is to support rapid exploration of many alternatives. ABR does this

by leveraging the skills artists have with traditional media. While this may not be the

most efficient solution for computer technologists to design visualizations, artists can

create dozens of novel 3D glyph designs in clay in just one hour.

From a technical standpoint, several computing advances were required in order to

present a first implementation of ABR. For example, we combine 2D and 3D scanning

techniques, texture synthesis, and morphing in new ways for visualization while also

supporting interactive 3D rendering. The main contributions of this chapter can be

summarized as:

1. The concept and theory of Artifact-Based Rendering.

2. The design of four example front-end applets that prepare artifacts for visualiza-

tion by constructing colormaps, cropping and calculating normal maps from image

76

artifacts, synthesizing new textures from examples, and optimizing 3D scanned

meshes.

3. The specification for and implementation of a first ABR rendering engine with

custom algorithms and interfaces to enable multiple new visual styles for depicting

point, line, surface, and volume data.

To support it, we combine 2D and 3D scanning techniques, texture synthesis, and

morphing in new ways for visualization. We also present an interactive rendering engine

that combines traditional scientific visualization data processing, filtering, and transfor-

mation via the Visualization Toolkit (VTK) [Schroeder et al. 2004] along with interfaces

and algorithms for depicting volumetric data fields in a variety of artifact-based styles.

In Figure 5.1 and throughout the chapter we present results from applications to the

actively researched data from domain science collaborators.

5.2 Related Work

5.2.1 Artistic Techniques and Theories in Visualization

The field of data visualization has often benefited from art and design theories, processes,

and techniques. Examples include accentuating the legibility of 3D forms by rendering

them in the style of pen and ink illustration [Winkenbach and Salesin 1994] or with

shading based on artistic color theory [Gooch et al. 1998]. Inspired by traditional oil

painting [Kirby et al. 2005], researchers have also developed algorithms to render data-

driven “brushstrokes” for visualization that might translate to an improved ability to

support multi-level understanding of data. Some results utilize painterly layering and

composition but maintain a mostly geometric appearance [Kirby et al. 1999; Laidlaw

et al. 1998]. In others, brushstrokes are clearly visible [Healey 2001; Healey and Enns

2002; Tateosian et al. 2007]. These look “painted” to most of us; however, artists

critique the visualizations as regular and algorithmic, missing the richness and subtlety

of a traditional painting.

Our work advances this research on three fronts. First, we extend to 3D the core con-

cept of building a visualization up from data-driven, artistic, low-level visual elements.

Second, we introduce a method for accomplishing this with real, physical artifacts rather

77

than via algorithmically generated approximations, which are often limited in their abil-

ity to capture the original artistic intent. Finally, we include actual artists in the process

of crafting these visualizations.

5.2.2 Artists and Designers in Visualization

The hand-drawn “Dear Data” series of 2D information visualizations [Lupi et al. 2016],

demonstrate how artists themselves can develop their own visual languages to convey

data in ways that are both accurate and inspire human connection to the underlying

information. These results build upon a tradition of artists’ contributing to visualization

(e.g., [Cox 1988]) and advance goals of the National Academies of Sciences, Engineering,

and Medicine, which call for expanded art-science collaborations [National Academies of

Sciences et al. 2018].

New tools are required to support artist involvement [Kähler et al. 2002], and re-

searchers have developed several. Drawing with the Flow [Schroeder et al. 2010] and

later Visualization-by-Sketching [Schroeder and Keefe 2016] do this with custom pen-

based user interfaces. Visualization-by-Sketching supports multivariate data layers and

animated streaklets, but all in 2D. Volume Shop [Bruckner and Groller 2005] and WYSI-

WYG Volume Rendering [Guo et al. 2011] make designing transfer functions for volume

renderings accessible to artists, but this does not quite address the multivariate design

challenge in the sense that volume rendering is hard to extend beyond conveying 1 or

2 variables simultaneously. Scientific Sketching [Keefe et al. 2008, 2005] is something

like a VR sketchbook for artists to design scientific visualizations. So, it is 3D and

expressive, but it does not connect to any underlying data in order to turn the sketches

into real, data-driven visualizations. Our work is the first in which artists may con-

struct 3D data-driven visualizations using visual elements they craft themselves using

the traditional media with which they are already experts.

5.2.3 Data Physicalization and Human Connection

Our approach is closely related to emerging research in “data physicalization” [Jansen

et al. 2015]. Whereas data physicalization is the process of visualizing data via a physi-

cal output (3D printouts, sculptures, active touch tables, etc.), ABR is the inverse, using

78

curated or handcrafted physical objects as inputs to generate digital data visualizations.

In concept, this builds upon the work of artists, such as Mielbach [Samsel 2013], who

use physical materials to provide context and connection for science. Both visual artists

and psychologists have studied the geometric characteristics of shape (e.g., roundness,

angularity, simplicity, complexity) and their impacts on human emotional responses [Lu

et al. 2012]. There is evidence that data visualizations can be more effective and en-

gaging when created by hand. Route maps can be more effective when presented in

a hand-drawn style [Agrawala and Stolte 2001], and hand-draw iconography improves

engagement and retention in data-driven storytelling [Lee et al. 2013; Rogers et al. 2017].

Glyphs (see surveys [Fuchs et al. 2017; Ropinski et al. 2011; Ward 2002]) are one area

where we believe ABR can make a powerful contribution to visualization. Prior glyph

designs are characteristically geometric in their visual aesthetic. This is true for glyphs

formed by superposition of 3D primitives (cones, spheres, cubes) [Feng et al. 2009; IV

et al. 2002; Legg et al. 2017; Lombeyda 2016] or parametric surfaces that are elegantly

defined to vary in response to multiple data axes [Kindlmann 2004]. In contrast, our

collaborative project grew out of discussions of how an artist would approach designing

similar glyphs. The discussion quickly turned to a demonstration, when a box of 250

small handcrafted clay glyph “sculpturettes” arrived by mail from the artist. With a

bit of clay in hand, a sculptor can create 40 to 50 alternative designs for 3D glyphs that

could be used for multivariate flow visualization within an hour.

5.2.4 Colormaps and Textures for Visualization

Seminal research on designing and testing perceptually accurate colormaps for general

use in visualizations [Moreland 2009; Rheingans 2000; Rogowitz and Kalvin 2001; Ware

2012; Zhou and Hansen 2016] establishes several rules of thumb, such as relying primarily

on luminance and saturation for depicting magnitude data. Tools are also available for

evaluating and modifying maps to adhere to commonly accepted guidelines [Bujack et al.

2018; Kovesi 2014; Zhou and Hansen 2016], which closely parallel the fundamentals of

color theory as studied by artists [Albers 2009; Itten and Birren 1970]. Our work shares

a similar motivation with systems that leverage artistic color theory, example works of

art, or artists themselves to design effective colormaps. Our Color Loom applet extracts

the color palette automatically from source images, which can be works of art, similar to

79

Figure 5.2: The ABR pipeline contains three main stages.

manual approach introduced by Vote et al. [2003]. Because they are quick to create, and

artists can tune the results based on the data, the resulting colormaps are often useful

for revealing more information in specific datasets [Patchett et al. 2016; Samsel et al.

2015] or even better engaging users, as in recent studies of affective use of color [Samsel

et al. 2018].

Although not as common as colormapping, varying texture in response to data is

a technique that has also been used previously [Healey and Enns 1999; Laidlaw et al.

1998; Ware and Knight 1995], including to encode uncertainty [Botchen et al. 2005].

Closely related to our work is that of Interrante et al. who encoded data using natural

2D textures of fibers and weavings of different densities [2000]. Later Gorla et al.

extended this to synthesize texture from an example that follows a vector field on a 3D

surface [2003]. We identify data-driven synthesis as important step for future work.

80

Figure 5.3: Artists will recognize the formal properties of (point, line, form, tex-
ture, and color) in these visual examples. Visualization scientists will recognize
magnitude channels to encode ordered data and identify channels to encode cate-
gorical data. The volume category focuses on color schemes for volume rendering
algorithms.

5.3 Artifact-Based Rendering for Visualization

ABR is a framework of tools, algorithms, and processes that makes it possible to produce

real, data-driven 3D scientific visualizations with a visual language derived entirely from

colors, lines, textures, and forms created using traditional physical media or found in

nature. This section presents the ABR theory, processes, and technical system details

that have been developed through a two-year, iterative process.

Figure 5.2 diagrams the full pipeline for ABR visualization, divided into three stages:

(1) Physical design work to craft artifacts; (2) Digitizing and translating artifacts for

data-driven visualization; (3) Creating data-to-visual mappings to implement multi-

variate interactive visualizations. Given the current library of pre-loaded artifacts, it is

possible to begin a new project at any stage and then return to earlier stages as needed

to create or adjust artifacts.

81

5.3.1 Stage 1: Creating and Curating Artifacts

Stage 1 of ABR is concerned with making or curating artifacts, physical representations

of color, line, texture, or form that are the elemental visual building blocks of the final

visualizations. Artists are used to thinking in these terms. Artists build, analyze, and

deconstruct visual scenes using design elements known as formal properties: point, line,

shape, form, texture and color [Evans and Thomas 2008; Lauer and Pentar 2012].

Recognizing the similarity in the way artists define formal properties and the way

scientific visualization practitioners characterize the topology of underlying data vari-

ables (point, line, surface, volume), we organize artifacts as diagrammed in Figure 5.3.

Notice that artifacts are grouped not just by data topology, but also by use, following

Munzner’s classification [2014] that distinguishes between visual marks for effectively

encoding “magnitude” relationships (e.g., scalar temperature data) and marks for en-

coding “identity” relationships (e.g., phytoplankton vs zooplankton).

Artifacts may be sculpted with 3D artistic tools; we have experimented with clay

sculpturettes, imprints, and shaved wax. 2D artifacts are also useful, and we have

experimented with drawing, painting, texture rubbings, prints, and photography. Fi-

nally, artifacts can be acquired from an endless number of found objects, and these

can be arranged in patterns to produce even more vis assets. We have worked with

leaves, rice, lentils, rice noodles, seed pods, gravel, photographs of friends’ paintings,

and found photographs. Color artifacts can come from many sources, including painting

and collage.

5.3.2 Stage 2: Digitizing, and Translating Artifacts

Stage 2 of ABR begins with capturing the material appearance and/or form of the

physical artifacts produced in Stage 1 as digitized artifacts. Here, the specific capture

technique depends completely on the type of artifact and sometimes also on the intended

eventual use. Next, digitized artifacts are translated into vis assets, for example, color

maps defined in a standard color space, computer graphics-ready textures, glyph meshes

that are correctly oriented, down-sampled if necessary, and have normal maps applied

for fast rendering.

82

Figure 5.4: The EinScan-SE structured light 3D scanner makes 3D scanning of
physical artifacts reliable and reproducible.

Digitizing Material Appearance and Form

A variety of capture techniques can be used, and the current implementation demon-

strates several options for both 2D and 3D artifacts. Photography (e.g., digital pho-

tographs of seed pods and bark found in nature), scanning (e.g., scans of hand-painted

ink wash lines or painted color maps), or digital tools with physical inputs (e.g., drawing

boards) are used to capture handcrafted 2D material appearances. In the future, we

are keen to also include lighting dependent material appearances using methods, such

as linear light source reflectometry [Gardner et al. 2003].

Photogrammetry and structured light 3D scanners are used to capture 3D material

appearance and form. Most of the digital artifacts pictured here were captured using

an automated EinScan-SE structured light 3D scanner. Each scan produces a high-

resolution mesh of around 100,000 vertices with corresponding photographic texture

83

data. In the future, low-cost smartphone based scanning might also be used (e.g., [Mu-

ratov et al. 2016]). For our work, however, the EinScan-SE hardware made 3D scanning

a repeatable process our artist could perform herself (Figure 5.4), and produces a high-

fidelity .obj file with a poly-count on the order of 100,000 triangles.

While the .obj files are of a high quality, they are scanned without any particular

orientation, and their high vertex count greatly limits the number of glyphs that can

be rendered at interactive framerates on a consumer computer. Thus, we implemented

a set of scripts to align and reduce the glyphs to prepare them for rendering, which you

can read more about in Section 5.3.2.

An open online digital library and underlying database system stores the raw digi-

tized artifacts and the vis assets that are generated from them in the next step. Meta-

data classifying the artifacts based on material type and possible use (e.g., to encode

line, direction, points) are included to enable online searching and filtering.

Translating to Vis Assets

Digitized artifacts are translated to vis assets using four custom interactive applets.

These are needed for two reasons. First, processing is often required before raw scans

can be used in the rendering pipeline. Second, we wish to be able to reinterpret each

raw digitized artifact in multiple ways as a vis asset (e.g., a scanned 3D mesh might

be used both to define a 3D glyph shape and a normal map for a bumpy texture to

apply to an isosurface). User interactions with the four applets are demonstrated in the

accompanying video.

Applet 1: Color Loom. The Color Loom applet (Figure 5.5) helps artists to

weave colors from digitized photographs, paintings, and other artifacts together into

coherent colormaps. First, the artist drags-and-drops one or more source images onto

the left panel of the window. A modified median cut quantization algorithm [Bloomberg

2008; Heckbert 1982] then identifies a suggested palette of six prominent colors found

in the image, which are displayed as editable color swatches to the right of the source

image. Artists can manually pull additional colors from the source images and create

more swatches by hovering over specific pixels. The color of any swatch may be tweaked

using hue, saturation, and brightness sliders. To build a colormap, swatches are dragged

to the right panel, where their vertical positions define control points for a continuous

84

Figure 5.5: The Color Loom applet. Artists drag and drop source images into the
left panel and pull swatches of color from these, which are then copied and arranged
in the right panel to create a color map.

colormap with interpolation performed in CIE Lab space. Results are saved in Paraview

.XML and PNG image formats.

Applet 2: Texture Shaper. The Texture Shaper applet (Figure 5.6) supports

cropping, previewing repeating texture patterns, and saving results in a standard format

expected by the ABR rendering engine. It also supports more advanced features that

are useful for ABR, including converting source imagery into normal maps that can be

used in per-pixel lighting calculations for 3D rendering and building ordered texture

sets for encoding data, like a binned gradient. Results are exported from the applet as

(sets) of compressed PNG image(s).

Applet 3: Infinite Line. The Infinite Line applet (Figure 5.7) uses texture syn-

thesis to transform an example image of a vertical linear mark into a longer, seamlessly

repeating texture that can be mapped onto ribbons and other 3D forms. The algorithm

follows the “video textures” algorithm presented by Schödl et al. [2000], which has been

used to synthesize drawn and painted strokes for computer graphics non-photorealistic

rendering [Kalnins et al. 2002] and is a natural fit since only 1D texture synthesis is

required. A similarity measure is computed, comparing each row of the texture to every

85

Figure 5.6: The Texture Shaper applet. A: Original source images, B: Selecting a
cropping box; C: Output images and normal maps.

other row. Then, a new texture is synthesized, starting from a random starting row and

proceeding through the texture by either moving to the next row in the original source

or, with some probability, jumping to a new similar row. A heuristic is used to make

the final image loop seamlessly; after synthesizing an image five times larger than the

desired output height (typically 2048 pixels), the algorithm searches through the result

to find the subsection of the desired height where the starting and ending rows are most

similar.

Since outputs of texture synthesis algorithms like this one are highly dependent

upon the algorithm’s parameters (e.g., probability of “jumping” to a new row, the

minimum allowable quality for “jumps”, the minimum size of a “jump”), the applet

makes it possible for artists to adjust these parameters and view the results in real time,

preserving the visual characteristics that encode identity while avoiding the distracting

regular pattern that is visible with a regular, repeating tiled texture.

Applet 4: Glyph Aligner. The Glyph Aligner applet (Figure 5.8) works with

3D scanned artifacts, which require user input and data processing before being used

as vis assets. On the left, mouse-based camera and object trackball controls are used

to reorient the glyph to associate “forward” and “up” directions with the 3D scan. On

the right, a preview updates in real-time to show the result of applying the glyph to

visualize an example vector field.

Before they can be reoriented via the browser applet, the 3D-scanned .obj files are

first uploaded to a P5-based webpage, and an initial decimation is performed through

86

Figure 5.7: The Infinite Line applet. A: The user interface with parameter controls
and texture synthesis preview. B: Examples of textures synthesized from inkwash,
rice grains, and ink dots.

a server-side blender script to reduce the poly count so that the object can be rendered

interactively in the web-page. Then the user can then rotate the model to specify a

forward and up direction, and the transformation matrix is then applied to the original

high-poly model, transforming the vertices to the new alignment.

After interactively aligning the model, the resulting mesh is passed to an automated

Blender3D Python script. This script decimates the 3D scanned mesh, which may

include 100,000+ vertices, to varying degrees to support level-of-detail (LOD) rendering

in VR, while preserving detail with normal mapping. A UV mapping for each mesh is

creating using Blender’s “Smart UV Project” algorithm, and normals are stored based

on the original geometry. Then, for each LOD mesh the differences between these

original normals and the normals of the decimated mesh are baked into a LOD-specific

normal map. The output can reduce the vertex count by three orders of magnitude

while preserving much of the surface appearance (Figure 5.9).

The resulting low-poly meshes are stored in a database with their corresponding

normal maps, which can be loaded into Unity3D for instanced-rendering with standard

Unity3D surface shaders.

87

Figure 5.8: The Glyph Aligner applet. Artists use trackball controls in the left
panel to align a 3D scanned glyph. The right panel provides a glyph field preview
using synthetic data.

5.3.3 Stage 3: Data-Visual Mapping and Visualization

Stage 3 of ABR involves implementing data-driven interactive visualizations using the

vis assets. To provide structure to these multivariate visualizations, we say that each

visualization is composed of multiple vis layers. These are analogous to the 2D layers

used by artists in image editing programs, but vis layers are not 2D; they are true

3D volumetric constructs. Each vis layer has hooks for connecting vis assets to data

objects. Thus, after creating a new oriented glyph layer, a designer could attach vis

assets to define the 3D glyph mesh and color map to use for the vis layer and also attach

data objects (e.g., density sampled phytoplankton concentration, velocity magnitude)

to drive color changes. The layers are combined into a final interactive visualization,

which may be rendered fast enough to optionally display in head-tracked, stereoscopic

VR.

Defining a Specification for an ABR Rendering Engine

We begin by more completely defining the problem an ABR rendering engine must

solve. An ABR rendering engine must produce 3D computer graphics imagery of various

data topologies (points, lines, surfaces, and volumes) using, as directly as possible, the

visual styles defined by real-world physical artifacts. This is a hard problem because it

88

Figure 5.9: The EinScan-SE structred light 3D scanner makes 3D scanning of phys-
ical artifacts reliable and reproducable.

requires a balance between staying true to the original visual properties of the artifacts

and manipulating these based on underlying data. Also, artifacts can be interpreted

in so many different ways. Given a series of evocative, organic textures captured from

leaves, rocks, or seeds, how precisely should they be used to encode data categories or

magnitudes? The answer will likely change based on the data topology (points, lines,

surfaces) and on the goals of the visualization. Thus, we reason that, like all good design

tools, a good ABR rendering engine should provide options (multiple complementary

rendering techniques) for how to interpret artifacts and attach them to data. We think

of the possible techniques as existing along a spectrum.

On the left are ABR rendering techniques that can be implemented with little or no

change to traditional visualization rendering. Color is one example. Existing systems

89

Figure 5.10: Example renderings and parameters for vis layers in the ABR rendering
engine.

typically support rendering a constant color per data object for identity encodings,

or color mapping for magnitude encodings. If the colors come from real-world source

images, this can be considered an ABR rendering technique, albeit at the far left of the

spectrum.

Beyond color, most ABR rendering techniques are non-trivial to implement in avail-

able visualization rendering engines. For example, existing tools often limit 3D glyphs

to preset geometric primitives. Textured lines or surfaces are not difficult to imple-

ment from a computer graphics standpoint, but scientific visualization engines do not

typically expose an ability to set the texture of lines and surfaces in order to support

identity encodings, and we know of no existing 3D scientific visualization design tools

that support varying these textures to support magnitude encodings. We demonstrate

each of these “middle of the spectrum” techniques.

On the right of the spectrum, we predict specific ABR rendering techniques may

themselves be the subject of future computer graphics research. For example, given

a set of clay glyphs used to encode twist along a line, computer vision and machine-

learning algorithms could be used to infer to visual style implied by the artists’ examples

and synthesize new parametrically controllable forms. The Infinite Line applet described

earlier is an important step toward this goal of automated synthesis of vis assets from

artifact examples.

90

ABR rendering techniques must support both identity channel and magnitude chan-

nel encodings (see Figure 5.3). Identity encodings are generally easier. Magnitude en-

codings are more innovative, and there are at least three possible approaches, ordered

moving from left to right along the spectrum: (1) Mapping an ordered set of artifacts

piecewise to data, like a binned color map. (2) Using artifacts as control points, imple-

menting some form of morphing between them, and mapping the results to continuous

data. (3) Parameterizing some characteristic of an artifact and synthesizing new in-

stances with data controlling this parameter. This could be as simple as controlling the

width of a glyph artifact, or as complex as synthesizing new texture patches with higher

density distributions of a pattern in response to underlying data.

Mapping Data to Visuals in Layers

Building upon metaphors that work for artists in other visual design tools (e.g., image

editors), we think of each new visual addition to the scene as a layer, many of which

can be seen in Figure 5.16. Every vis layer takes as input one data object, some number

of scalar or vector variables of that data object, and some number of vis assets, all of

which may be selected at design-time by the user (Figure 5.10). The extensible rendering

engine currently supports four layers.

Glyph Vis Layer. The glyph vis layer renders instances of a glyph (either a 3D

mesh or an image displayed on data-aligned quads) located at coordinates specified by

a point set data object. The glyphs can be axis-aligned, aligned to a selected direction

vector variable, or assigned random orientations. Color can be assigned either as a

constant across all glyphs or data-driven. A constant glyph size can be selected (defined

as a percentage of the largest extent of the data object), and an axial radius can be

specified either as a constant, or according to a selected width scalar variable. Normal

maps are automatically applied if available. For image-based glyphs, alpha masks may

be supplied to mask away the negative space.

We found that an important use for custom-sculpted glyphs is to represent scalar

field data by distributing glyphs on a surface or throughout a volume. Thus, regular,

random, and density-based samplings are supported. For density-based sampling, we

implemented a Metropolis-Hastings algorithm [Chib and Greenberg 1995], which is a

Markov Chain Monte Carlo method.

91

Figure 5.11: Options for applying vis assets to lines or surfaces include (a) color
mapping, (b) data-driven texturing, (c) data-driven texturing with bump mapping,
(d) data-driven texturing with blending and masking, (e) data-driven texturing with
masking to create an organic line profile.

Line Vis Layer. The line vis layer renders ribbons or tubes along paths defined

by a line set data object. If normal vectors for each point are provided, the ribbon or

tube can be oriented according to the line normal and some rotational offset, and each

mesh vertex is assigned texture coordinates with u equaling the arc-length from the

line origin to the vertex, and v running from 0 to 1 either across the ribbon, or along

the circumference of each tube ring. Color is assigned either as a constant along the

entire geometry or based on a data-driven colormap. Similarly, a single tiled stamp,

alpha-mask, or normal map can be applied across the entire geometry.

Optionally, an ordered texture set can be used for data-driven texturing. In this

mode, textures are applied using a binned data mapping; the data range is divided into

N evenly-sized bins, where N is the number of textures in the corresponding texture

set. Blending can be applied in the fragment shader to hide texture seams, with a

user-defined blend distance. Figure 5.11b-e shows specific examples of how textures are

binned and blended.

Our implementation supports multiple sampling strategies and artists can switch

between samplings that have equal steps in arc length or integration time, making it

92

possible for the visual style to include evenly placed glyphs that are distorted (stretched)

to encode speed or to include undistorted glyphs that are spaced along the line to encode

speed.

Surface Vis Layer. The surface vis layer renders a triangle mesh defined by a

polygonal mesh data object. Every fragment of the surface can be colored and textured

based on either constant vis assets, or vis assets that are blended by the provided

data variables. Since the surfaces are often complex and have no inherent UV texture

parameterization, an automatic texture mapping approach is needed. We implemented

a tri-planar projection technique, where the texture is projected along the axes and

the three projections are blended according to the normal of the surface at any given

location. This blending is further influenced by a projection blending factor that controls

how crisp the seams are between the three projections. If the texture has a clear

structure, such as grains of rice, a low blending factor may be preferred, whereas if the

texture is more continuously varying, such as watercolor strokes, a higher blend factor

will help hide the seams. All of line-style effects shown in Figure 5.11a-d can also be

applied to surface layers to do data-driven texturing on arbitrary 3D surfaces.

Volume Vis Layer. Artists often refer to density fields of glyphs created with

Glyph Layers as a “volumetric effect”. However, the engine also supports visualizing

volumetric scalar fields using traditional volume rendering. The volume vis layer volume-

renders a 3D grid of voxel data using artifact-based colormaps as a transfer function.

Implementation of Layers

Although it may be possible to implement ABR on top of a variety of other existing

rendering pipelines using the concepts and framework described here, before this work,

there was no existing system that could support the rendering required without a signif-

icant system-building effort. Our implementation is built upon a combination of VTK,

for access to advanced data processing routines, and Unity, for better support for ren-

dering in a variety of immersive displays and future support for 3D and tangible user

interface techniques. All of the software, artifacts, and assets are being made openly

available to the public.

A vis layer is a mapping between vis asset(s) and a data object that can be rendered

to the 3D computer graphics scene. A vis layer may be as simple as drawing a one-pixel

93

wide line along the shape of a line data object with a given color, or as complex as

applying several vis assets to vary multiple data-driven visual properties at every point

along the line. Every vis layer takes as input one VTK data object, some number of

scalar or vector variables of that data object, and some number of vis assets, all of which

may be selected at design-time by the user. Whenever a parameter is changed, the vis

layer triggers its pre-processing routine to convert the data variables and vis assets into

renderable Unity3D meshes and textures. If these Unity3D assets can be represented

as game objects in Unity3D’s built-in scene-graph, rendering is handled automatically.

Alternatively, custom draw calls can be made each frame for more advanced rendering

techniques, including writing layer-specific custom shaders.

Vis layers are cheap to develop. At minimum, a new class is defined inheriting

from a VisLayer base class, providing an implementation for an asynchronous abstract

method that is used to generate to persistent rendering objects and a rendering strategy.

Vis layer parameters are declared as C# properties with a [LayerParameter(string

paramaterName)] attribute, which are monitored via reflection to generate layer-specific

user interface panels and trigger updates of layer rendering objects according to changes.

Vis layer parameters can be any type, but will most often be primitives (floats, ints,

bools), vis assets (Textures, Meshes), or data objects.

During the course of the research, we developed many separate VisLayer classes,

each investigating a different ABR technique (e.g., SimpleLineVisLayer, BinnedTex-

tureRibbonVisLayer, BlendedProfileRibbonVisLayer). Now, after honing the tech-

niques, we have been able to refactor to group the algorithms into the following four

main VisLayer classes, examples of which are pictured in Figure 5.10.

Glyph Layer. The glyph vis layer renders instances of a glyph (either a 3D mesh

or an image displayed on data-aligned quads) located at coordinates specified by a

VTK point set data object (Figure 7.17). The glyphs can be axis-aligned, aligned to

a selected direction vector variable, or assigned random orientations. Color can be

assigned either as a constant across all glyphs or data-driven. A constant glyph size

can be selected (defined as a percentage of the largest extent of the data object), and

an axial radius can be specified either as a constant, or according to a selected width

scalar variable. Normal maps are automatically applied if available. Profile images are

treated as luminance masks, with a corresponding brightness cutoff, which cuts away

94

Figure 5.12: Two examples of surface layers using color and aspect ratio to encode
multiple variables in both 3D glyph and 2D glyph styles.

the negative space of an image glyph corresponding to either the brightest or darkest

regions of the profile image.

During the render object creation routine, per-glyph color and transformation at-

tributes are calculated and stored in GPU arrays. Then on each Update() call, the

glyphs are drawn using a batched instanced rendered call, with a shader that renders

each mesh with the specified color, alpha, and normal maps, and spatial transforms.

Line Layer. The line vis layer renders ribbons or tubes along paths defined by a VTK

line set data object (Figure 5.13). If normal vectors for each point are provided, the

ribbon or tube can be oriented according to the line normal and some rotational offset,

and each mesh vertex is assigned texture coordinates with u equaling the arc-length

95

Figure 5.13: Two examples of line layers using color and texture to encode multiple
variables in both ribbon and tube line styles.

from the line origin to the vertex, and v running from 0 to 1 either across the ribbon,

or along the circumference of each tube ring.

Color is assigned either as a constant along the entire geometry or based on a data-

driven colormap. Similarly, a single tiled stamp, alpha-mask, or normal map can be

applied across the entire geometry, or an ordered texture set can be used for data-

driven texturing.

If a texture set is used, textures are applied using a binned data mapping; the data

range is divided into N evenly-sized bins, where N is the number of textures in the

corresponding texture set. Blending can be applied in the fragment shader to hide

texture seams, with a user-defined blend distance.

96

(a) A surface from the brain data (b) A surface from the astrophysics data

Figure 5.14: Two examples of surface layers using color, texture, and alpha masking
to encode multiple variables.

Figure 5.11b-e shows specific examples of how textures are binned and blended, using

color (a) or texture (b-d). In (b) the bin-blend value is zero, and the seams between the

textures are visible; (c-e) use non-zero values. A normal texture is used in (c) to better

capture the material appearance of the original artifacts. Alpha masks are used in both

(d) and (e) to cut-out profile shapes in the line.

A custom shader is used to implement this ABR rendering technique. During

the render object creation routine, new Unity3D meshes are constructed, storing the

datarange-normalized variable values for the colormap, stamp, and normal map texture,

and alpha mask texture into the r,g,b channels of the vertex color attributes respectively.

The fragment step of the shader performs the bin-blending and application of all the

textures, multiplying the selected color with the luminance of the stamp texture, and

discarding the fragment if the luminance of the alpha mask falls below the specified

cut-off.

Surface Layer. The surface vis layer renders a triangle mesh defined by a VTK

polygonal mesh data object. Every fragment of the surface can be colored and textured

based on either constant vis assets, or vis assets that are blended by the provided data

variables (Figure 5.14). Since the surfaces are often complex and have no inherent

UV texture parameterization, an automatic texture mapping approach is needed. We

97

implemented a tri-planar projection technique, where the texture is projected along the

axes and the three projections are blended according to the normal of the surface at any

given location. This blending is further influenced by a projection blending factor that

controls how crisp the seams are between the three projections. When this factor is 0,

no blending occurs, and the three projections have crisp separation. When the blending

factor is 1, every fragment contains some weighted combination of all three projected

images. If the texture has a clear structure, such as grains of rice, a low blending

factor may be preferred, whereas if the texture is more continuously varying, such as

watercolor strokes, a higher blend factor will help hide the seams. All of the effects

shown in Figure 5.11a-d can be applied to surface layers to do data-driven texturing on

arbitrary 3D surfaces.

Volume Layer. The volume vis layer generates a traditional volume-rendered image

of a 3D grid of voxel data using artifact-based colormaps. Our Unity3D CG shader

implementation performs GPU ray-marching through a 3D texture populated by the

voxel data (Figure 5.15. This layer only requires a cube to be drawn, with front-face

culling, and a shader that performs the ray-marching. Colors are applied for each voxel

based on a colormap, and transparency is assigned using the luminance of another

colormap.

5.3.4 Data Management

Before we began designing Artifact Based Rendering, several members of our team made

extensive use of Paraview. Paraview is an application for creating 3D data visualizations,

built on the Kitware’s Visualization ToolKit (VTK) library. Paraview supports loading

and extensive filtering of VTK datasets, and provides rendering controls for 3D point,

line, surface, and volume data. Through the selection of colormaps and the application

of several pre-defined geometric 3D glyphs, Paraview can produce 3D visualizations

that follow commonly accepted data visualization theory (Figure 6.2 on Page 108).

Recent versions of Paraview even allow visualizations to be viewed on VR head-mounted

displays.

While Paraview has proven sufficient for creating accurate, perceptually-acceptable

visualizations of most 3D datasets, we found that the images it produces lack the vi-

sual richness and expressiveness of tools like Visualization by Sketching [Schroeder and

98

Figure 5.15: An example of volume rendering using a colormap as a transfer function
to encode a volumetric variable.

Keefe 2016], with which our artist was equipped to produce highly expressive 2D visu-

alizations. We observed that Paraview’s rendering implementations do not support the

visual variety that our artist could dream up, nor does the interface support an itera-

tive creative design process conducive to exploring rich visual variation. For example,

it provides no built-in means of importing custom glyphs, nor does it support texturing

surfaces with images. Furthermore, Paraview’s VR capabilities are currently limited

and don’t support any dynamic user interactions.

Thus, we decided to use Paraview for what we found it to be successful for – data

wrangling and filtering – and build our own 3D rendering pipeline with a focus on

data-driven visual variation and iterative design using Unity3D.

99

We selected Unity3D for its highly customizeable graphics rendering engine, and its

out-of-the-box support for VR interactions across nearly all available VR head mounted

displays. However, as a Game Engine, Unity3D is not automatically equipped to support

complex 3D datasets. Our first task was to enable flexible Paraview-like data loading

in the Unity3D’s C#-based platform.

Creating a VTK plugin for Unity3D

VTK comes with a vast C++ and python API that handles data loading, parsing, and

filtering. To allow Unity3D to take advantage of VTK’s data processing power, we

needed to produce a C# wrapper around the VTK library.

Using Python, we implemented a script that parses the VTK C++ header files

and generates both C bindings and a C# API that matches the C++ VTK API. The

script takes in a list of desired VTK class names, and pre-processes the respective C++

header files (to unfold the many pre-processor macros the VTK API relies on). Then

the script constructs a symbol table for the classes and public methods through regular

expressions. Finally, this symbol table is used to create plain-C bindings for all the

many overloaded VTK methods, and a C# library that mimics the C++ VTK class

hierarchy and method signatures.

Upon compiling the C-bindings into a .dll (along with a statically-linked build of

the VTK library(and importing the generated C# scripts into Unity3D, Unity3D C#

scripts can be developed with code that directly matches the VTK example code and

documentation. Additional Unity3D-specific extension methods allow VTK methods

such as double* vtkDataSet::GetPoint() to return a Unity3D Vector3, or double*

vtkDataSet::GetBounds() to return a Unity3D Bounds object.

Finally, the .dll and C# scripts are exported from Unity3D as a .unitypackage and

can be imported into any Unity3D application, even on a system that did not previously

have VTK installed on it.

VTK for Artifact Based Rendering

VTK file formats are used to bring data from a wide range of sources into the rendering

engine implemented in Unity3D. We use Paraview and Python interfaces to the under-

lying VTK toolkit to load raw structured and unstructured grids representing scalar,

100

vector and tensor fields, filter the data to create geometrical representations, then write

the results in forms immediately accessible to the visualization system. Figures in ??

include dataset slicing, isosurface extraction and streamline advection performed using

Paraview and vtkpython.

We augmented the VTK toolkit to provide sampling methods that are key to our

glyph representations of data. For volumetric data, we sample multi-dimensional prob-

ability distributions using a Metropolis-Hastings (MH) algorithm [Chib and Greenberg

1995], a Markov Chain Monte Carlo method. Our software supports a transfer function

that maps the input data range of interest to a probability distribution. Metropolis-

Hastings sampling from this mapped result then produces a set of samples distributed

with a density proportionate to the user’s interest.

We also have implemented several methods of sampling geometrical elements. We

sample particle traces based both on equal steps in arc length and integration time. This

enables us to present the local velocity either by distorting evenly placed glyphs or by

irregularly placing undistorted glyphs. We also have implemented area-based random

sampling of surfaces (independent of VTK’s limited glyphing capabilities), enabling us

to instance complex glyphs along the surface in the Unity visualization engine.

5.4 Discussion

5.4.1 ABR Design Guidelines

We can provide some preliminary design guidelines informed by our work with ABR

thus far. At a high level, we note that the structure shown in Fig. 5.3 provides artists

with artifact categories common to their visual language. Designing a visualization fol-

lows the same process one uses when laying out the structure of a painting; blocking out

the underlying structure using line, shape and forms. Once the structure is in place,

artists can draw upon existing pre-loaded artifacts or create new ones, naturally ap-

plying the principles of design (Balance, Repetition/Rhythm, Focal Point/Dominance,

Unity/Category [Evans and Thomas 2008; Lauer and Pentar 2012]) to organize the com-

positions, direct attention, clarify hierarchy, highlight relationships, and create unity.

At a lower level, we have found the following specific design considerations to be most

important for working with ABR.

101

Figure 5.16: One of several results from the upcoming Chapter 6 ABR design study
with the biogeochemistry data in the Gulf of Mexico [Wolfram et al. 2015]. The
legend has been automatically generated from the colormaps used in the visualiza-
tion.

Contrasting Forms. When choosing glyphs, consider contrast between forms. To

create a visual contrast, pair glyphs that are: geometric versus handcrafted or organic,

curvilinear versus angular, sparsely textured versus densely textured (e.g., the identity

channel glyphs in Fig. 5.3 are arranged from dense to sparse texture).

Contrasting Profiles. Profiles of both glyphs and ribbons play a key role in visual

distinction capability. Consider contrast in complexity, profile, and continuity (e.g., the

streamlines in Figs. 3.1 and 6.1 (right)).

Contrasting Textures. Consider contrast between size and/or source of surface

textures of objects. See Fig. 6.1 (left), for examples of glyphs with contrasting density

and source of textures. As with forms, textures follow similar rules in creating contrast;

likewise, some examples include organic versus geometric textures and curvilinear versus

angular textures as shown in Fig. 5.11.

Color. The Color Loom applet enables quick construction of versatile colormaps.

When selecting images from which to construct a colormap, select images that provide

102

multiple types of contrast specifically: luminance; cool - warm; and low and high satu-

ration. The range of contrast types will enable high-resolution; semantic associations;

and highlighting capability. Ware and Rhyne provide in depth guidance based on these

principals [Rhyne 2016; Ware et al. 2013].

5.4.2 Pairing with Perceptual Guidelines

Aside from giving artist users starting points informed by the perceptual literature, we

have made an intentional decision to not constrain artists by encoding hard constraints

or rules into the framework, instead favoring giving users the freedom to create and

discover new visual encoding strategies that have not been explored before and may

break some of the current rules. If successful, this means that ABR may lead to new

visualization designs that researchers wish to verify and better understand using low-

level perceptual studies. Thus, the two approaches are complementary. ABR might

be thought of as a top-down approach to inventing and experimenting with new visual

encoding strategies for visualization, whereas low-level perceptual studies of generic uses

of color, shape, texture, and form might be thought of as a bottom-up approach. We

are excited for these two research methodologies to continue to inform each other.

5.5 Conclusion

With Artifact Based Rendering, we present a new artist-accessible design process for

leveraging the variation of the natural world and an artist’s creativity to produce visual-

izations of complex multi-variate volumetric data visualizations. Visualizations created

through ABR should enable deeper discernment of the data by encoding multiple vari-

ables in the same space simultaneously using multiple visual channels such as color,

texture, and form. And these visual channels have unlimited variation and can be

crafted to take advantage of natural associations we already have with different types

of physical objects, making the data visualization engaging and accessible to a wide

audience.

In this chapter, we examined the underlying theory and implementation of ABR. In

the following chapter, we put ABR to the test by applying it to a number of different

datasets. And by conducting a design study with an artist, we compare how ABR

103

improves upon the workflows provided by more traditional visualization systems like

Paraview.

Chapter 6

Applications and Results of

Artifact-Based Rendering

6.1 Introduction

1 In the last chapter, we took a deep look at the theoretical and technical structure of

Artifact-Based Rendering, a framework of tools, algorithms, and processes that makes it

possible to produce real, data-driven 3D scientific visualizations with a visual language

derived entirely from colors, lines, textures, and forms created using traditional physical

media or found in nature. In this chapter, we put ABR to work and show how we can

apply our new techniques to a wide range of 3D scientific data.

To provide an initial evaluation of ABR, we report user feedback from some of these

applications along with a within-the-research-team design study that characterizes how

visualization design processes can differ with ABR as compared to traditional scientific

visualization tools.

The main contributions of this chapter can be summarized as:

• Evaluation of impact on visualization design processes via a within-the-research-

team design study comparing designing visualizations with ABR versus a tradi-

tional tool.

1This chapter is based on work published in IEEE Transactions on Visualization and Computer
Graphics [Johnson et al. 2019b].

104

105

• Results and feedback for two domain science applications.

• Further examples of different datasets with ABR applied

6.2 Internal Exploratory Design Study

The quality of the work that results from design processes is one possible metric for eval-

uating ABR, and we investigate this with domain science collaborators in Section 6.3.

However, having followed the proceedings of the BELIV workshop series that explores

visualization evaluation techniques “beyond time and errors” [Sedlmair et al. 2018],

we were motivated to consider more creative alternatives for evaluating impact on the

visualization design more directly. Thus, the work in this section targets more direct

metrics, such as the number and quality of design alternatives explored when faced with

a real-world, challenging scientific visualization design problem.

Our long-term goal is to measure this type of impact on process in a larger-scale

setting (e.g., building on recent workshops at IEEE VIS [Rogers et al. 2017, 2016] and

the College Art Association Conference [Samsel and Keefe 2013]). The 2-day internal

exploratory design study presented here is intended to be a first logical step toward this,

providing an initial characterization and comparison of the design process with ABR

vs Paraview, which serves as an example of a popular traditional scientific visualization

tool, and piloting possible future evaluation methods and metrics.

6.2.1 Methodology

Given a new scientific dataset and time to discuss relevant data and research questions

with a domain scientist, the task is to explore a variety of potentially useful visualiza-

tions for the problem. Since the design study is posed as an A vs B comparison, the

artist performs that same visual design task first with ABR and then with Paraview.

Learning effects are sure to be a factor, but, by scheduling ABR on day 1 and Paraview

on day 2, the advantage falls to Paraview.

Our research team’s artist, also the second author of the paper, acted as the only

participant for the internal design study. Being a member of the research team, the

artist had worked to co-develop ABR for more than 18 months. However, all of the

106

features of the system were not ready until the week before the design study. Thus, her

hands-on training creating art with traditional materials was a lifetime; her hands-on

experience with the ABR toolset was less than 1 week; and her hands-on experience

with Paraview was more than 5 years.

In a true workshop setting a formal introduction to the data would be required, but

our case, the artist and scientist had already discussed high-level scientific goals as part

of our ongoing collaborative project. The dataset comes from scientists studying mar-

iculture, specifically commercially viable macroalgae growth. They have a challenging

data analysis problem that requires understanding of many critical data variables from

a fusion of remote sensing and a high-resolution computational simulation of ocean cur-

rents [Petersen et al. 2015; Ringler et al. 2013; Wolfram et al. 2015] extended to include

biogeochemistry [Moore et al. 2001, 2013; Wang et al. 2014, 2015]. In offshore regions

of the Gulf of Mexico, eddies in the ocean currents could provide “small farms” for

macroalgae since the eddies can carry key nutrients, but to understand which eddies

provide the most suitable conditions, it is necessary to relate eddy velocity, rotation,

divergence, salinity, and temperature data together with nitrate, phosphorus, and other

biogeochemical variables, a few of the 30 variables within the dataset – all within the

context of the local geography. To facilitate direct comparison, the same data were

utilized on day 1 and day 2.

We recorded the design process by saving state files and screenshots at regular inter-

vals and whenever an interesting image was produced. We also logged time performing

design functions (e.g., refining color palettes, sculpting glyphs, sketching).

6.2.2 Results and Interpretation

Figures 6.1 and 6.2 document process and results for the two tools. Since rapid experi-

mentation and broad thinking is the foundation of all creative design processes [Buxton

2010], we also report data on the number of designs and design elements explored and

time performing design activities. With ABR the artist designed with 72 line textures

and glyph artifacts. 49 artifacts were created during the study, including 43 new hand-

painted artifacts; 6 new hand-sculpted glyphs and 16 new colormaps.

The total time working with ABR was 7 hours, 46 minutes. 2 hours, 19 minutes

were spent on Stage 1 of the ABR pipeline (crafting and making), with 8 minutes of

107

Figure 6.1: Process and results from the internal exploratory design study with ABR
on the biogeochemistry data in the Gulf of Mexico [Wolfram et al. 2015], left to
right: pre-made glyphs; glyphs painted during the study; glyphs constructed during
the study; textures captured pre-study; detail of final visualization; visualization of
the Gulf of Mexico.

that time devoted to searching for reference imagery online and the rest working with

clay, paint, and wire. The total time spent on Stage 2 (digitizing and translating) was

3 hours, 25 minutes. The total time spent on Stage 3 (data-visual mapping and VR

visualization) was 2 hours, 2 minutes.

With Paraview, 4 existing glyphs, testing a range of sizes, were explored from the 5

available built-in geometric primitives, and 14 existing colomaps (Figure 6.2). The time

working with Paraview was shorter than expected going into the study; just 2 hours

and 43 minutes.

The most interesting result is the difference in time and motivation devoted to design

with each tool. Paraview includes just three non-directional glyphs, so the options for

glyph combinations were quickly exhausted. If the artist had not already spent time

exploring color on day one, more time could have been spent usefully exploring color in

Paraview – this is the area in which artists are most able to contribute to design with

Paraview. However, since she had already spent considerable time on color, she quickly

reached a point of diminishing returns on day two; frustration due to limited options

for glyph forms grew once she had balanced the size and color intensities of the nitrates,

and she did not want to continue.

By contrast, with ABR, the artist worked over 7.5 hours to test the basic glyph

and line design options. She reported that the power and versatility of ABR gave her

a range of design options comparable to those available in her physical studio, where

108

Figure 6.2: Left - Encoding options in Paraview, Right - Results from the internal
exploratory design study with Paraview.

possibilities are essentially limitless. A key finding was that though it may seem that

ABR would be a comparatively slow method of designing glyphs, in fact, the artist was

able to iterate through many forms based on the needs of scientists with more speed

and more precise results than she was able to with previously available tools. This

mode of quick, preliminary iteration and experimentation was crucial in harnessing the

power of the increased visual vocabulary that ABR enables. The process resulted in

a broad range of possible solutions suitable to addressing the complex visualization

problems posed by large, multivariate datasets and complicated scientific questions.

While making individual forms was not in itself time-consuming, with such a capacious

range of options for design, the artist did need to spend more time honing in on those

best suited to the research questions and visualization needs.

Qualitatively and quantitatively, we can say that ABR enabled a broader exploration

109

of the visualization design space. Shneiderman outlines requirements for computer-

based creativity support tools as enabling results that are both novel and useful [Schnei-

derman 2007]. Simply comparing the process and result imagery in Figure 6.1 to typical

VIS proceedings makes a clear case for novelty. Despite the limitations of this early

study (a single impossible-to-be-unbiased user, an exploratory rather than scientifically

controlled study), we believe these results already demonstrate that ABR is enabling us

to reach and visually critique points in the scientific visualization design space that we

have never explored before. The study does not specifically address usefulness. Thus,

we take an early step toward this evaluation in the next section.

6.3 Applications and Guidelines

We have also evaluated ABR by applying the new framework together with collaborators

on several actively researched scientific datasets.

6.3.1 Macroalgae in the Gulf of Mexico

The first application uses the same Gulf of Mexico data as the design study. This

section reports on follow-on efforts with these data, taking a week of time to refine the

visualization and seek feedback.

Figure 5.1 along with the accompanying video document the visualization results

achieved using ABR. Color maps were generated to provide a natural color palette using

artifacts from photographs and paintings. Eddies are shown using textured ribbons to

depict the flow lines. Color encodes rotational direction (green-blue for cyclone, orange-

red for anti-cyclone), and the texture itself is varied along each ribbon based upon the

local degree of curvature. Temperature and salinity are encoded using textured surface

layers. Three isosurfaces of temperature are shown at levels to evaluate macroalgae

growth (20, 25, and 26 degrees Celsius). These are also colored and textured using an

inkwash texture set; the texture is denser when salinity increases. Finally, three custom

glyphs are distributed using density based sampling to depict three types of nitrates.

The colors for the three were chosen to be analogous and also vary in response to the

local salinity.

110

The collaborating domain scientist posed the challenge of being able to clearly vi-

sualize 5 or more variables simultaneously because he has found this impossible to

accomplish using his current toolset consisting of Paraview (via slices, isosurfaces, and

volume rendering) and python-matplotlib (to render final plots for publication after

finding areas of interest via Paraview). Our interpretation is that these current tools

are not visually expressive enough – one can only overlay so many surfaces and volume

clouds before the different fields become too difficult to discern. Upon seeing the results

in Figure 5.1, the scientist reported that ABR will be “transformational” to his science,

saying these pictures can easily visualize more than five variables. With this type of

glyph-based visualization, “you can superimpose functional relationships between mul-

tiple fields [such as nitrates getting caught in eddies and pulled to the surface] in a

way that you can’t with volume rendering or surfaces alone.” Similarly the textured

isosurfaces with color have the potential to encode “three in one”, packing more data

into the multivariate visualization. On the aesthetic, he commented: They look like

biology more than they look like plastic. They could be real, produced by nature. I think

that people are going to underestimate that. At first, I’m perturbed, these don’t look like

plastic, then I realize this is not a problem but a major benefit.

6.3.2 Brain Microstructure Imaging

In another application domain, scientists are developing computational tools to lever-

age high-field Magnetic Resonance Imaging (MRI) for understanding structural and

functional alterations of brain connections in neurodegenerative disorders. The latest

algorithms in this field make it possible to not only identify several crossing pathways

in white matter areas with complex configurations but also to estimate microstructural

parameters, such as axonal diameter and density [Farooq et al. 2016a,b], increasing the

difficulty of visualizing Diffusion-Tensor MRI data, which is already regarded as a signif-

icant 3D visualization research challenge. To date, such data have only been visualized

using slice-based approaches (e.g., [Farooq et al. 2016a]).

Figure 6.3(a) is a straightforward translation of the prior slice-based visualizations to

a true 3D visualization. Clearly occlusion is a major factor in designing an effective 3D

representation, and this straightforward translation is not successful. Section B shows

a refined “magic lens” design. Volume rendering and sparsely sampled glyphs provide

111

(a) A: Straightforward extension on slice-based methods to 3D. B: ABR de-
signed visualization with high-resolution data in the centrum semiovale.

(b) A custom legend showing the mapping of glyph attributes
to the multiple variables in the ABR visualization above.

Figure 6.3: Visualizing brain microstructure in 3D.

context throughout the brain, and high-resolution data are presented in an interactively

defined small volume. The voxels are filtered to display only regions with crossing fibers

using oriented glyphs to show the primary and secondary fiber orientations. A glyph set

was designed so that each glyph has a similar profile, but the density of the linear texture

along the length of each glyph increases in response to the axonal density variable. The

glyphs are also sized based on the axonal radius parameter. An oriented ellipsoid depicts

the “leftover” diffusion for each voxel after computing the two primary fiber orientations,

and a volume rendering provides anatomical context.

The collaborating domain scientist suggested a focus on the centrum semiovale (high-

lighted in Figure 6.3(b)), which is a region with high fiber crossings. From the primary

112

and secondary fiber orientations, the visualization confirms expected brain structure in

this region. This is the first time the scientist had seen the data in a true 3D display,

and looking at the visualization in VR convinced him that he can see structure that

is not possible to see in 2D slice-based visualizations. Similar to the Gulf of Mexico

results, the aesthetic produced with ABR leads to a natural, organic visual language,

and by encoding data with textural variations of the glyph rather than color (as used in

prior slice-based approaches), we were able to use color to encode a new derived variable

(similarity between primary and secondary directions), which, with a color map applied,

calls visual attention to crossings that are nearly perpendicular (red color range).

6.3.3 Astrophysics

During the early stages of the evaluation of the design foundations, library, and soft-

ware systems, we applied these to visualize an astrophysics simulation. Datasets were

provided by collaborators whose research couples a high-resolution hydrodynamics sim-

ulation of the early universe together with a hydroxyl and water-producing chemistry

model in order to determine how water molecules would be created and distributed in

space and time in the early universe [Wiggins and Smidt 2018]. By comparing simulation

results to astronomical observations, the scientists aim to verify both the hydrodynamic

and chemical models of ancient water formation.

Figure 6.4 shows two views and possible visualizations of the simulation. Here, the

task scientists need to perform is to track the concentrations of three heavy metals

needed for water formation (CH4, CO, OH) and relate these to water formation. The

top two images are depicting close-ups of the water (blue crescents) with the density

volume rendered in light blue, and the metals represented in white disks of high angular

texture, referencing rock and metal. Understanding the relationships between these

variables can elucidate the necessary conditions for water formation, which can help to

establish where else water may have formed.

Prior to these new visualizations, the scientists have only been able to see the vari-

ables depicted in the single 3D visualizations produced here by comparing six separate

slices through the data or, more recently, a volume visualizations with three volumetric

layers. The multiple volume layer approach at least provides three-dimensional context,

and scientists were excited and gleaned new information from the data as a result of

113

Figure 6.4: Top row: Two variations of handcrafted multivariate volume visual-
ization simulating water formation in the early universe. The turquoise volume
rendering represents the particulate density, the water is shown in the curvilinear
flowing blue forms, selected for their detail and thus becoming a focal point [Lauer
and Pentar 2012]. The orange, white and green represent the three heavy metals
being tracked, CH4, CO and OH respectively. The comparison shows the artists
iterations needed to accurately depict the science given the complexity of variables
glyphs and modifiers within the system. The right side is the earlier image. The
left, the final, providing the emphasis on the water, encoded with an associative
form. Bottom row: This Snapshots from the design process of assigning elements,
families, and modifiers to the data, starting with on the left with a geometrical
family typical of present-day scientific visualization, moving toward a richer, hand-
crafted visual language, and then using color to double-encode the type of each
variable.

seeing these three variables together in a single view [Wiggins et al. 2019]. However,

we know that rendering multiple data layers as colored volumes obscures the data and

leads to a need for the scientists to interpret complex color combinations.

Figure 6.5 shows a comparison of one of these original three-layer volume renderings

(left) and a result from the new method (right). It’s worth noting that an artist was also

involved in creating the volume rendering on the left, and the effective use of color visible

there took two days of hand-tuning volume rendering transfer functions in order to reach.

One the right, the visualization includes six (twice as many) volumetric variables and the

results are more clearly legible. Three heavy metals (CH4, CO, and OH) are rendered

in warm tones on angular glyphs. The glyphs come from different families and are also

114

Figure 6.5: A supernova midway through its explosion. Left: A three-layer volume
rendering. In related work, scientists used this visualization to for the first time see
three of the variables from their simulation visualized in the same three-dimensional
space. Right: A visualization using hand-sculpted families of design elements to-
gether with a single layer of volume visualization depicts twice the number of vari-
ables and uses the extended visual language to support hierarchical associations
(e.g., the two styles of water glyphs are both round and smooth, the three styles of
metal glyphs are all angular).

different visual elements. This provides the maximum visual distinction, reinforcing the

color categorization. The precursor to water H2ii and the water itself are encoded with

curved glyphs, referencing flow and thus having associated properties with water rather

than metal. The yellow volume rendering of just a single variable depicts pressure.

6.3.4 Abstract Data and Future Work

There are many other possible applications that remain to be tested, such as more ab-

stract data that do not exist within a predefined 3D structure. We believe the approach

will translate well to abstract data because artists design visuals to convey abstract

concepts, like human emotion, all of the time. It would be fascinating, for example,

to ask artists to craft a series of glyphs to represent generic uncertainty, correlation

and anti-correlation, or cause and effect. Future work also includes experimentation

with new vis layers suggested by artist users and combining the handcrafted, organic

aesthetic that is possible with ABR with more traditional geometric aesthetics.

115

6.4 Conclusion

The internal design study and applications are by no means a final evaluation; however,

they clearly demonstrate an ability for the first time to create complete scientifically

useful multivariate VR data visualizations using a visual language derived entirely from

traditional physical media. The resulting aesthetic is novel, looking, as one domain

scientist reported, like it could be “produced by nature”; we believe this has powerful

implications for making science more understandable and engaging. Further, by leverag-

ing skills artists already have with physical media, we believe ABR can have a powerful

positive impact on the visualization community by broadening the diversity of people

who can now contribute to creating 3D scientific visualizations.

The human-in-the-loop design process of ABR has the advantage of creating a path-

way for artists, our society’s most accomplished visual thinkers, to engage in the sci-

entific process. (This previously has been shown useful for creating data-driven 2D

visualizations in a recent IEEE SciVis “best paper” [Schroeder and Keefe 2016], but

not in 3D until now.) Artist involvement also naturally leads to visualizations with a

decidedly different, more natural, hand-crafted aesthetic. Our experience is that when a

viewer is “present” with the resulting data visualization in a VR environment, this differ-

ent, natural, physical aesthetic is immediately obvious and even “felt”. Throughout this

chapter, we saw still, 2D images of the results of ABR; but with a small stretch of the

imagination, the remarkable experience of sharing a 3D space with these artist-driven

visualizations may be appreciated.

Thus, we offer the results of Artifact Based Rendering as a primary example of

Palpable Visualizations. We foresee many possible extensions to our technique, such

as integrating many of the techniques described in the related work of the previous

chapter. Work is already being done developing a visualization design and exploration

user interface beyond the current Unity3D editor panels that we’ve implemented. These

improvements and others can increase the palpability of scientific visualization along

both the discernible and the accessible axes.

In the following chapter, we push the accessibility of our visualizations even further

by taking strides to present ABR visualizations on affordable, wireless AR and VR

headsets.

Chapter 7

Data Streaming and Remote

Rendering for 3D Scientific

Visualization

7.1 Introduction

We are living in an age of increasing remote collaboration and teleconferencing. For

several years, services like Google Docs, GitHub, and DropBox allow researchers to

work both asynchronously across the globe, and applications like Skype and Zoom have

enabled synchronous collaborations to exist between diverse groups that may never

have existed otherwise. While none of these tools can perfectly mimic the synergy of

shoulder-to-shoulder teamwork or face-to-face discussion, the massive potential for more

mutually beneficial interactions across distances outweighs the qualitative sacrifices of

virtual technology.

However, we’ve repeatedly encountered one particular hole in this web of virtual

collaboration tools during our own work on advancing 3D data visualization. Countless

times we’ve been providing verbal updates to our teams of artists, scientists, and en-

gineers, and have had to disclaim “...but to fully understand these advancements you

really need to see it in VR,” an experience which often involves either traveling across

the country to visit our research lab, or purchasing a high-performance computer and

116

117

a head-mounted display and learning the steps of accessing the relevant datasets and

configuring our software for their system. Ironically, virtual collaboration has failed us

in the area of sharing progress of virtual reality data visualization.

This obstacle is not limited to sharing AR/VR progress with fellow collaborators.

We’ve encountered at least three types of limitations around the issue of geographically-

stationary resources.

1. As outlined in the previous paragraphs, the difficulty of sharing progress of AR/VR-

based work with fellow researchers can hinder advancements in techniques and

applications due to lack of shared experience.

2. The datasets being visualized are becoming larger and more dynamic, and it can

be time-intensive to curate and transfer relevant subsets from supercomputers

in Texas to computer graphics research labs in Minnesota so real-time AR/VR

applications can access the data locally.

3. In order to share new AR/VR-related data visualization advancements with the

public, the public either needs to travel to the AR/VR research lab, or else ex-

pensive hardware needs to be transported carefully and undergo sometimes hours

of set-up for a guided public demonstration.

But at the same time as our scientific data sets and our rendering techniques get

more complex, low-end VR displays are becoming more widely available. Soon, it won’t

be inconceivable that a classroom of children may have access to 1:1 personal VR or

AR headsets just as they now may have access to a personal tablet computer. And

most science collaborators will probably have some degree of access to one of these

low-end AR/VR displays, even when they’re collaborating remotely. This increasing

ubiquitousness of affordable immersive hardware raises the question of how they might

support the sharing of scientific data visualizations for explaining science to the public

or discussing research with collaborators.

While these low-end, affordable untethered devices may have high-resolution VR

displays and tracking (like the oculus Quest) or advanced Augmented Reality technol-

ogy (like the Magic Leap), they have dramatically lower storage, computational, and

rendering capabilities than a VR display connected to a expensive high-end research

118

PC. Usually these low-end displays run on a completely different architecture and op-

erating systems than the Windows and Linux machines on which so much immersive

data visualization research is developed.

Analogously, even the traditional high-performance PC’s used for high-end virtual

reality data visualization techniques are not able to store the entirety of a dataset being

analyzed. Sometimes this is because the datasets are simply too large - some simulated

time-series can be petabytes of data. And sometimes this is because the data is being

simulated on-the-fly, based on new input and questions from the researcher as they

study the visualization. These simulated datasets are pushing the limits of massive

supercomputers, and often only a small static subset of the data is copied to a PC being

used for rendering an immersive data visualization.

Must supercomputer-scale datasets be reduced in fidelity or scope in order to be

visualized with PC-based immersive visualization design workflows? And should visual-

izations be designed, optimized, and even limited to support a wide range of affordable

hardware? Or are there techniques that free up visualizations to be driven by massive

datasets, and be as rich and expressive as designers can make them, while still being

accessible on any VR/AR device?

In this chapter we will present our new techniques for streaming data from super-

computers to PC-based immersive data visualizations, remotely rendering scientific vi-

sualization content for low-end affordable AR/VR displays, and supporting synchronous

remote collaboration around a virtual data visualization. We specifically apply these

methods to flexible Drag-And-Drop Unity plugins and demonstrate them with visual-

izations designed through Artifact-Based Rendering.

The contributions of this chapter are as follows:

• An architecture and demonstration of real-time data streaming from a supercom-

puter to a consumer laptop running an interactive visualization

• An architecture and demonstration of collaborative remote rendering from a high-

performance rendering computer to consumer untethered VR & AR displays with

parallax correction techniques

• A characterization of the performance of data streaming and remote rendering for

accessible data visualization

119

• An analysis of the most fruitful opportunities for future work in Remote Rendering

7.2 Related Work

This work follows in the footsteps of previous research and development in both visu-

alizing pieces of large datasets, and remotely rendering for untethered head-mounted

displays. Here we visit several of the most relevant prior works upon which our work

builds, or from which our work diverges.

7.2.1 Remotely Visualizing Large Volumetric Datasets

Often, volumetric datasets can take more memory than a desktop computer can han-

dle, with simulations sometimes consisting of petabytes of numeric data. Producing

an interactive visualization of data like this requires judicious sampling strategies and

carefully engineered rendering techniques.

A straight-forward approach to remote visualization is to stream entire images from

a server-side visualization tool to a client computer. In 1999, Engel et al. demonstrated

early techniques for rendering entire images on the server side and streaming the pixels to

a client [1999]. To improve transmission speeds, various approaches to compression were

considered, such as Friesen and Tarman’s 2000 approach of using dedicated hardware

to convert RGB images to NTSC video and transmit 30 fps video at 1280 x 1024 [2000].

Much more recently, in 2017 Raji et al. demonstrated how volumetric scientific data

can be remote-rendered from the cloud for embedding in web pages [2017], and in 2018

they extended this to allow remote-rendering into a Microsoft HoloLens AR display

with head-tracking [2018]. However, latency was a major issue, and they reported 4

frame-per-second refresh rates, unacceptable for comfortable immersive viewing.

As we consider applying image streaming for viewing through untethered AR de-

vices like the HoloLens, Magic Leap, or VR displays like the Oculus Quest, we are

held to a higher standard for responsive framerates, as explained by LaViola Jr [2000].

According to LaViola Jr, Cybersickness is primarily caused by discrepancies between

head movement and the perceived image in the display. One way to avoid this type

of cybersickness might be to capture 360-degree images of the visualization and stream

these to the user (such as Qian et al.’s technique [2018], referenced in the following

120

section). However, this approach does not provide true stereo-scopic depth cues nor

depth cues from head translations, both of which Aygar, Ware, and Rogers argue are

important tools for understanding the 3D structure of such datasets as particle-based

simulations [2018]. Thus, we look towards remote-rendering methods that allow for

low-latency stereo examinations.

In 2002, Luke and Hansen presented the Semotus Visum framework to integrate

several remote-rendering approaches [2002]. They describe three rendering approaches

that are all integrated into their approach: Image Rendering, the technique described

above where all the rendering is done on the Server Side; Geometry Rendering, where

the server is responsible for sampling the data and producing sets of polygons that

can be rendered on the client; and ZTex Rendering – also referred to as Depth Image

Based Rendering (DIBR), which renders both a color texture and a depth map of a

visualization from a particular view on the server, and then renders both on the client

side as a textured grid distorted by the depth map.

Geometry Rendering is a useful technique for taking a complex volumetric dataset

on a server, and visualizing iso-surfaces, particles, and streamlines on the client side.

For example, Engle et al. built several web-based volume data viewers that transmitted

iso-surfaces to allow the user to request iso-surfaces of varying iso-value and quality and

have the mesh streamed to the client where it could be rendered in real-time [1999;

1998]. The sampling and production of these sorts of geometry can be easily performed

server-side on a diverse range of datasets by Paraview [Ahrens et al. 2005]. And the

local visualization of these geometry objects can be done on a modern PC using many

visualization approaches, such as Artifact Based Rendering [Johnson et al. 2019b]. One

warning to note about Geometry Rendering is that there is no upper bound on the size

or complexity of the geometry being sent. It can be generally thought of as a subset of

the original volumetric data, but may still tax the memory and rendering capabilities

of the client computer.

DIBR takes its inspiration from depth-based rendering optimizations. Relief map-

ping [Oliveira et al. 2000] and Parallax occlusion mapping [Tatarchuk 2005] are two such

methods for taking a gray-scale height map of complex geometry and computing-per-

fragment what shading would appear were the surface distorted according to the height

map. Displacement mapping [Heckbert 1986] takes similar inputs, but instead actually

121

distorts the vertices of a mesh according to the values sampled from the height map.

Lukasczyk et al.’s Voidga demonstrates a process for using DIBR to capture important

views of large spatial datasets using depth information to reconstruct 3D geometry that

provides a reasonable view that can be rendered interactively in a manner similar to

displacement mapping [Lukasczyk et al. 2018]. An advantage to Displacement mapping-

based DIBR over Geometry Rendering for remote rendering is that there is a bound on

rendering requirements, as the actual geometry being rendered is a pre-computed grid-

ded mesh. This ensures that any given frame in an untethered HMD can be rendered

at a consistent framerate even as the head position changes. A disadvantage is that

there can be holes in areas originally occluded from the viewer. Voidga demonstrates

a partial fix for this by capturing views from multiple angles and joining the resulting

meshes to fill in some of these missing regions.

7.2.2 Untethered HMDs, Remote Rendering, and Latency Mitigation

for AR/VR

In 2011, Suma Rosenberg’s team at USC introduced the world’s first smartphone-based

head-mounted display prototype and developed the FOV2GO, an open-source foldable

immersive viewer that was the precursor to the Google Cardboard [Olson et al. 2011].

This provided a first step toward affordable, untethered VR displays based on mobile

phone hardware such as GearVR, Oculus Go, and most recently Oculus Quest. In recent

years, untethered AR displays have also been released, such as the Microsoft HoloLens

and the Magic Leap, which – while not quite having reached the consumer market –

indicate a future in which mobile immersive graphics will be a more and more ubiquitous

technology. All of these devices provide a dramatic increase in accessibility for immersive

content, but also come with severe limitations in both storage and rendering hardware as

compared to tethered, PC-based VR systems (PCVR). To make up for these limitations,

work has been done to stream rendered content onto these devices from remote servers

based on real-time tracking data from the untethered devices.

One solution is to focus on spherical pre-rendered or video content. Quain et al.

has worked with streaming high-resolution 360-degree video to phone-based displays by

predicting head orientation and transmitting only sub-sections of the video feed [2018].

122

Techniques such as this, however, don’t allow free exploration of an immersive environ-

ment or even full 360-degree stereo 3D imagery.

Several projects for generalized tracked streaming VR experiences are currently avail-

able as of 2019, such as Virtual Desktop for the Oculus Quest [virtualdesktop 2019] and

the open-source ALVR [Polygraphene 2019]. These tools provide a means for stream-

ing tracking data from the untethered device to a PCVR-capable machine, which ren-

ders the VR imagery before streaming it back to the untethered device. While these

techniques mitigate latency in head orientation tracking through device-integrated 3

degree-of-freedom Asynchronous reprojection, they do not account for latency in head

position.

This concept of “Asynchronous Reprojection” shows up in the hardware implemen-

tations of most consumer VR devices even when remote rendering is not involved, and

is discussed by Google in their guidelines for VR development:

Asynchronous reprojection has three major effects:

• It ensures that the frame rate experienced by the user remains high,

which is critical to user comfort in VR.

• It reuses frames when the application isn’t able to draw.

• It ensures that movement within the app feels smooth and does not

judder.

Asynchronous reprojection is designed for 3DoF head movement, as it only

corrects for rotational movement.

Asynchronous reprojection does not correct for positional movement in 6DoF

apps, which means if the app framerate drops the user will begin to expe-

rience a disconnect between the rendered and actual position. The lower

the app frame rate, the larger the disconnect. Lower frame rates can also

introduce errors associated with animations and other visual effects.

(https://developers.google.com/vr/discover/async-reprojection)

Another approach that can reduce latency in remote rendering is split rendering, an

approach taken by Lai et al. in their design study of remote rendering [2019]. They

123

describe split rendering as exploring the key insight about immersive interactive appli-

cations that near-objects and far-objects have “contrasting predictability and rendering

workload.” Their split-rendering approach, which they call “Cooperative Rendering,”

is to separate the rendering of the background into a panorama that can be updated

less frequently than foreground elements. They than use the local phone-based GPU to

render foreground interactions and use the remote rendering server to produce periodic

background panoramas which are then combined on the untethered display.

Also in November of 2019, Oculus released a feature called “Oculus Link” which pro-

vides an implementation of remote rendering that streams data from a PCVR-capeable

machine to an otherwise untethered Oculus Quest via a USB C cable. During a keynote

address at the Oculus Connect conference, Oculus CTO John Carmack explained several

technical limitations that prevented Oculus from releasing over-the-network untethered

remote rendering for the Oculus Quest [Carmack 2019], such as the unreliability of a

WiFi-network to provide consistent frame updates. One option addressed was a split-

rendering approach that would allow dynamic objects to be rendered locally on the

untethered device while static objects would be rendered less frequently, but that for

the foreseeable future, forcing developers to engineer their applications with a split-

rendering approach was an unacceptable constraint. And even with their cable-based

solution, Carmack admitted that only the head orientation is fully satisfactory, and that

spatial translation of the head or hands still produces around a frame of latency.

Back in 2013, John Carmack described in great detail several possible latency mit-

igation strategies for VR [Carmack 2013], one of which is extremely similar to the

Depth Image Based Rendering (DIBR) techniques by Luke et al. and Lukasczyk et

al. [Lukasczyk et al. 2018; Luke and Hansen 2002] in the previous section. Abrash

describes a generalized technique for forward-warping, where the framebuffer can be

treated as a height field, depositing source pixels in their new positions after a head

translation. He also describes the specific types of artifacts such as silhouette edges

where “internal parallax would have revealed surfaces not visible in the original render-

ing.” These strategies were offered primarily for local latency on a tethered HMD, but

at the end of the article he suggests a potential application for remote rendering where

warping occurs on the client, but warns that the maximum amount of mitigated latency

should be 30 or 40 milliseconds to avoid silhouette artifacts as much as possible.

124

We can see in these works that remote rendering is not yet a solved problem, es-

pecially in the area of translations, where simply pre-rendering a panorama that can

be asynchronously reprojected does not produce the parallax effect our visual system

relies upon for depth perception. We see this as a primary area to focus in our work on

remote rendering.

7.3 Architecture

7.3.1 Motivation and Goals

In the effort to present our processing-intensive Artifact-Based Rendering visualizations

on affordable, untethered head-mounted displays, we first turned to currently avail-

able remote-rendering solutions like ALVR [Polygraphene 2019]. ALVR was designed

to stream PC VR applications and video games to the many types of affordable VR

displays offered by Oculus, such as the 3-degree-of-freedom Oculus Go and Gear VR,

or the 6-degree-of-freedom Oculus Quest. Out-of-the-box, ALVR provided what at first

appeared to be a passable head-tracked, stereoscopic view of our Unity ABR visualiza-

tions. However, upon sharing the experience with other collaborators, we discovered

that ALVR the remote-rendered experience induced Cybersickness for several of our

team members who otherwise had little trouble exploring visualizations rendered lo-

cally.

Upon carefully examining the characteristics of ALVR that led to cybersickness, we

consistently noticed that symptoms occurred when making translational head move-

ments. As we examined the implementation of ALVR, we learned that ALVR leverages

the devices integrated 3-degree-of-freedom reprojection to mitigate head rotation error

caused by the natural delay of the two-way communication between the device and

the rendering PC. As expected, even with a high-end dedicated wireless router, ALVR

reported that we were getting latency of 50-80 milliseconds from the capturing of head-

tracking data to the display of the respective image for the user. For comparison, a

locally-rendered VR experience is expected to have a motion-to-photon delay within

one render frame, like 11.11ms for a 90Hz display to 8.33ms for a 120Hz display. So

when ALVR receives a remotely-rendered frame, it has already been at least 5 times

longer since the user’s head position has been captured than on a tethered headset.

125

ALVR can adjust for mild rotational offsets by spherical reprojection, but if the head

has translated in the meantime, the expected parallax between foreground and back-

ground objects is delayed. It’s this motion-to-photon delay that we hold accountable

for inducing cybersickness in our team members [LaViola Jr 2000].

Rather than focus on solving the generalized case of remotely visualizing any VR

content on an untethered AR/VR device (as ALVR attempts to do), we decided to focus

on providing a non-cybersickness-inducing experience for a specific 3D data visualization

use case from our experience working on the applications described in the previous

Artifact-Based Rendering discussion. In such cases, the datasets are simulated on a

supercomputer, and subsets of the data are manually copied to a desktop PC, where

Artifact-Based Rendering techniques are applied, and (thus far) the results can be

displayed on a local, tethered VR display. The specific visualizations we are concerned

with are composed of surfaces, ribbons, and glyphs, which are colored and textured

through Artifact-Based Rendering techniques. These elements combined often consist

of over a million vertices during a given frame, exceeding the rendering capabilities

of untethered AR/VR displays like the Magic Leap or the Oculus Quest (which may

begin to drop below 60 fps after 250,000 vertices [Oculus [n.d.]]). As described in the

introduction of this chapter, we see great advantages to faster data synchronization

between the supercomputer and ABR-powered desktop PC for the sake of dynamic

exploration of multiple timesteps, and we see great advantages to accessing Artifact-

Based Rendering driven visualizations on multiple remote, low-cost, untethered AR and

VR displays simultaneously for the purposes of remote collaboration and engagement

with the public. Our goals in this research are as follows:

• Dynamically synchronize data objects between supercomputer simulations and

desktop PC’s producing Artifact-Based Rendering Glyph and Surface visualiza-

tions

• Display stereoscopic, head-tracked views of the ABR Glyph and Surface visual-

ization on remote Magic Leaps and Oculus Quests

• Avoid cybersickness due to instantaneous discrepancies between head movement

and the perceived image in the display [LaViola Jr 2000]

126

• Provide accurate spatial placement of 3D structures as perceived through depth

cues from stereo vision and head translation [Aygar et al. 2018]

• Facilitate multiple simultaneous remote viewers

• Open-source an extensible Unity-based remote-rendering framework for incorpo-

rating future techniques for new applications

• Support drag-and-drop, out-of-the-box remote rendering for arbitrary Unity-based

projects, allowing for further refinement and optimization through developer-

specified settings

It is worth noting that we are not trying to produce a flawless representation of

the original ABR visualization on the remote devices. As our current goals are not

to maximize presence (differing from those of the video gaming industry), but instead

to maximize comfortable and structurally accurate views, we will tolerate temporary

negative visual artifacts such as the silhouetting described by Carmack [2013].

7.3.2 High-Level Architecture Design

Figure 7.1: Three connected nodes - A supercomputer, a high-performance graphics
computer, and a consumer AR/VR device - are connected by two types of trans-
mission strategies: A) Streaming simulated data from the supercomputer onto a
rendering node, and B) Streaming a pre-rendered immersive view from the render-
ing node to the low-cost HMD.

We approach our goals in two stages. Figure 7.1 Shows the interactions between

three pieces of computational hardware. This approach separates the supercomputer

containing the large simulation data from the client user’s HMD by a rendering node.

Thus, to go from the simulation data to the HMD by way of Artifact Based Rendering,

there are two separate transmission stages: Data Streaming and Remote Rendering.

127

Data Streaming

Since many complex datasets (like the bio-geochemistry described in Chapter 6) are

comprised of multiple terabytes of volumetric data, the data is sampled into geometry

like iso-surfaces and streamlines which are transferred to a VR-capable computer. Then

visualizations are designed around these subsets of the data. This limits the visualiza-

tions to only displaying what can be stored locally on the rendering computer, making

it difficult to dynamically re-sample the data on-demand (with new streamline seed

points, for example), or switch between time steps.

Data Streaming would entail replacing these direct references to local files with

network-connections to a dataset server on a supercomputer. This server could re-

sample the data on-demand based on either requests from the ABR visualization sys-

tem or local updates to the simulation data, sending sampled geometry with desired

timesteps or sampling parameters in response. When the transmission is complete, the

rendering node would re-generate the visualization based on the newly received data.

Remote Rendering

In addition to the space limitations, low-cost untethered AR/VR displays also have

major limitations in graphics rendering power. They may simply not be able to process

tens of thousands of glyphs or ray-tracing or other advanced rendering techniques that

are commonplace for scientific data visualization. Normally, this limits the visual fidelity

of immersive experiences on these low-cost untethered displays.

Remote Rendering off-loads these graphics-intensive tasks to a larger, high-performance

rendering PC and transmits rendered imagery to the client’s untethered display. This

requires the client display to regularly update the rendering node with its latest tracking

data, and then imagery is rendered from the requested viewpoint and transmitted back

to the display. The display then performs corrections for any tracking error introduced

during the transmission delay.

7.3.3 High-Level Implementation Approach

While supercomputer simulations, visualization tools, and untethered AR/VR clients

may be written in many different languages, we chose to focus on implementations where

128

the data server is running Paraview, the rendering node’s visualization tool is a Unity

application, and the untethered AR/VR client is also running a Unity application as a

viewer.

We chose to focus on Paraview for the data server because it’s a common tool for

many of our collaborators for working with simulated large datasets, and is also easily

accessible on Desktop PC’s for rapid development and testing.

We chose to focus on Unity for the rendering node both because our Artifact Based

Rendering implementation is built on Unity, and also because Unity is a widely accessible

platform for other visualization research projects.

And we chose to again focus on Unity for the client viewer as it provides support

for all of our target untethered AR/VR displays. With Unity, we can easily deploy and

debug the same application on the Magic Leap and the Oculus Quest.

We’ve designed a python-based ParaView filter that can send any number of VTK

data objects to a remote computer anytime a timestep or filtering parameter is changed,

along with a synchronizing message that allows the Unity3D application to update its

visuals after all affected geometry has been replaced by the data stream. Figure 7.2

shows a sequence diagram of the following communication. The Unity3D application

running our ABR visualization system was augmented to connect to the supercomputer

via TCP sockets, replacing our original code that relied on VTK files stored locally on

a computer. Whenever ParaView had new data to transmit, the Unity3D application

asynchronously collected the new VTK data objects via the TCP sockets, producing

new renderable geometry in the background as a type of “back-buffer”. Once the syn-

chronization message signals the new data objects have all been sent, the Unity3D

application replaces the out-dated geometry with the new streamlines and glyph fields,

resulting in a synchronized update showing the latest data-driven objects. This way,

the rendering laptop never needs to store any of the data on its harddrive, and instead

only stores at most two timesteps worth of dynamic data in memory at any time.

This approach also works with non-supercomputers, and can even run with a local

instance of Paraview on the rendering computer. Even without using a supercomputer,

this live connection with Paraview enables interactive manipulation of the data sampling

on Paraview while the ABR visualization automatically updates every time the dataset

changes.

129

Figure 7.2: A sequence diagram showing how two data objects are transmitted from
a machine running Paraview to a machine running Unity upon some change to the
dataset (e.g. an incremented timestep or a new sampling parameterization).

Our approach is similar to the “Geometry Rendering” approach to remote rendering

described by Luke and Hansen [2002]. The client is still expected to handle the ras-

terization of all rendered geometry, but that geometry is only a spatial and temporal

subset of what the server has available.

7.3.4 Remote Rendering Architecture

Generalized Client-Server Approach

The remote rendering architecture is divided up for a server Unity application and a

client Unity application. In each application, a simple Unity Prefab object is placed

(Figure 7.3 green-red) and configured for communication. The server application is

130

Figure 7.3: a) The client viewer application contains a Unity Prefab (green & red
arrows) that serves as an origin for the remoted rendered content, which can be
moved dynamically by the user. The user’s viewpoint relative to this Prefab is
captured (blue) along with camera parameters (purple) and these are sent as a
content frame request to the remote rendering server. b) A scene of Unity objects
(yellow) is captured by a virtual camera (gray). This camera has camera parameters
(purple) and offset (blue) relative to a Unity Prefab (green & red arrows) based on
the request received from the client (a). c) The content is rendered as a buffer of
pixels, plus any additional structural information required such as per-pixel depth,
and returned to the client as a content frame response. d) The received content
frame is used to produce a 3D “facade” of the original content, displaying only the
features of the content visible from the requested viewpoint. This facade is rendered
interactively relative to the client Prefab until a new content response is received.

assumed to contain a set of dynamic, opaque game objects depicting an Artifact-Based

Rendering Visualization of a dataset(Figure 7.3b yellow). The client application is

assumed to contain head-tracked cameras coming from some type of Unity XR camera

rig (Figure 7.3a). This might be driven by packages from Oculus or Magic Leap, or

even generic Unity XR cameras.

When the server application is launched, it begins listening for any new client con-

nections on a developer-specified port. As each client application launches, a connection

is established with the server and a list of tracked views is established for each client.

As part of this connection establishment, the server instantiates a virtual camera per-

view-per-client.

131

After connection has been established, the client begins transmitting content frame

requests. A content frame is a rendered image of the server’s content from a particular

viewpoint. In order to request a content frame, the client must provide both a view

transform, and all the camera parameters such as resolution, field-of-view, and near/far

plane distances. These parameters are generally derived from the head-tracked AR

or VR cameras, but can be manipulated for a number of reasons, such as over/under

sampling (depending on network constraints), expanded FOV for padding the peripheral

of the user’s vision, or cropping out background content with a restricted far plane. The

view parameters are transmitted to the server in the form of a content frame request.

When a content frame request is received by the server, the server adjusts the po-

sition, rotation, and camera parameters of the respective virtual camera (Figure 7.3b

gray) in the remote rendering server application to match the tracked client view. The

updated virtual camera is then instructed to immediately render the scene to a ren-

der buffer (Figure 7.3c), capturing both the rendered RGB values as well as any other

useful geometric information such as the depth buffer. The contents of these buffers

are optionally compressed, and transmitted back to the client with a header containing

the details of the request. The header and buffers are referred to as the content frame

response.

When the client receives the content frame response, it first unpacks the buffers into

graphics objects such as textures. The client then begins generating a content frame

facade in a thread separate from the rendering thread. A content frame facade could, for

example, be a displacement-mapped mesh of vertices deformed to match the depth of

the captured content as a relief pattern from the requested viewpoint. Once the content

frame facade has been constructed, the facade Unity objects are placed relative to the

content frame request’s camera orientation (Figure 7.3d). Until a replacement content

frame arrives, the content frame facades are rendered in real-time relative to the Remote

Rendering Client prefab transform (Figure 7.3d green-red) from the instantaneous view

of the user.

The Remote Rendering Server prefab transform (Figure 7.3b green-red) can be

thought of as the origin of a capture volume, and the Remote Rendering Client prefab

transform (Figure 7.3a green-red) can be thought of as a projector of the captured con-

tent. The Remote Rendering Client prefab can thus be moved, rotated, and even scaled

132

interactively by the user, or treated as a sub-component of a larger visualization system

such as Bento BoxChapter 3. The content frame facade will move around interactively

even between new content frame updates, which are always requested in the coordinate

space of the Remote Rendering client prefab.

(a) Server-side prefab settings

(b) Client-side prefab settings

Figure 7.4: (a) The settings required of a developer to add a Remote Render Server
prefab object to any Unity Scene. The developer must only specify a port on
which the server will listen for new Client connections. (b) The settings required
of a developer to add a Remote Render Client prefab object to an AR/VR viewer
application. The developer must specify a port, IP Address, and a list of dynamic
viewpoints from which to render. In this figure, the left and right eyes of a VR
Player Rig have been selected and labeled respectively.

The Unity-based architecture is designed to enable custom remote rendering servers

and clients with minimal configuration. The Unity API is provided as a set of Unity

Prefabs (short for “prefabricated gameobjects”) that can be imported into any existing

Unity project.

133

To configure a Unity scene to be a remote rendering server, the developer drag-and-

drops the Remote Rendering Server Prefab into the scene hierarchy, and adjusts the

networking port if necessary (Figure 7.4(a)). The developer may also choose to position

the transformation component of the Remote Rendering Server prefab to center the

capture space on the important part of the scene.

To configure a Unity scene to be a remote rendering client viewer, the developer

drag-and-drops the Remote Rendering Client Prefab into the scene hierarchy, sets the

appropriate port and IP address of the remote rendering server, and specifies how many

views should be used for capturing content (Figure 7.4(b)). Each of these views are la-

beled, and both a camera and a transformation object are selected to provide parameters

for the server-side virtual cameras.

Additional optional features may also be configured. For example, a current exten-

sion allows the developer to assign different types of objects on the server-side to be

exclusively rendered into a particular view’s content frame. To use this feature, the

remote rendering server application assigns custom layer labels to particular objects of

interest. Custom layer labels could be “Glyph” or “Surface” (Figure 7.5(a)). Such lay-

ers can be assigned by hand in the Unity UI, or procedurally through scripting. Then,

on the client side, the developer can explicitly enter any number of layer labels for each

view. For example, two content frame facades can be generated for two different types

of geometry if the developer sees fit (Figure 7.5(b)). By not selecting any layers for a

client-side view, all layers will be captured.

All of these settings – and more – can be accessed through the script for the Remote

Rendering Client script. Besides these configuration settings listed in the Unity UI,

additional overrides can be set for the client views, such as field-of-view overrides or res-

olution multipliers. These can be set dynamically at run-time, allowing the application

to optimize for better performance or higher resolution.

These scripts can be found in the example applications found at

https://github.umn.edu/joh08230/QuestDepthViewer and

https://github.umn.edu/joh08230/QuestDepthServer.

Note: These will be moved to a public-facing repository with documentation.

134

(a) Server-side layer specification (b) Client-side layer specification

Figure 7.5: Specifying layers to be captured for each view in the client viewer
application

7.3.5 Content Frame Facade Generation

At its simplest reduction, a content frame facade could be a quad placed at the far-

plane displaying the remotely-rendered pixels (referred to as Image Rendering by Luke

and Hansen [2002]). They describe three rendering approaches that are all integrated

into their approach: Image Rendering,. If new content frames could be fetched instan-

taneously per render frame, this would result in a seamless remote rendering experi-

ence. However, network latency and server rendering time will inevitably introduce

delay between a user’s motion and the resulting change to the content presented to the

user’s eye. In VR, this motion-to-photon delay is known to cause cybersickness in some

users [LaViola Jr 2000].

Instead of relying entirely on the server for rendering, some rendering can be done

per-frame on the client device to correct for the user’s instantaneous view orientation,

driven by the content frame. Some approaches could be based on Geometry Rendering,

like rendering imposters [Schaufler and Stürzlinger 1996; Sillion et al. 1997] at coordi-

nates provided by the content frame. Other approaches could be based on ZTex/Depth

135

Image Based Rendering (DIBR) by using the depth buffer to produce a 3D relief of the

content [Heckbert 1986; Oliveira et al. 2000; Tatarchuk 2005]. In both cases, entrusting

some limited rendering to the client, the user can make comfortable changes to their

point-of-view, receiving per-frame imagery spatially consistent with their motion. Any

updates to the content frame will be inserted once they’ve been received. Because view-

point correction can be performed on the client side, new content frames need not be

acquired for every render frame. In practice, 3-to-10 content frames per second may

prove sufficient for a comfortable viewing experience.

Figure 7.6: A Unity scene of objects on the Remote Rendering Server application

In our implementation, we utilized DIBR to correct for per-frame changes in view.

Suppose we have a scene of objects such as those in Figure 7.6. When a new content

frame request arrives at the server, the DIBR technique dictates that the scene is ren-

dered to both a colorbuffer and a depth buffer, which are combined into an RGBA

texture where the A component is the depth of each pixel normalized to eye-to-farplane

space (depth of 0 corresponds to a pixel at the eye, and depth of 1.0 corresponds to

a pixel located on the far plane). This depth-encoded image will be called an RGBD

texture. The RGBD texture is packaged as a byte array into the content frame response

along with the header describing the camera orientation, field-of-view, near/far plane,

and resolution of the RGBD texture byte array.

136

Figure 7.7: A grid of quads aligned at the far-plane specified by the configuration
in the content frame response. Here the resolution of the grid has been specified
as 32x32 for the purpose of illustration, but in practice grid may be more densely
subdivided.

Depth Reprojection

When the DIBR content frame response arrives to the client, the RGBD texture is

re-assembled, and a new gridded mesh is aligned at the far-plane of the camera con-

figuration specified by the header of the content frame response Figure 7.7. This grid

will have a vertex resolution less than or equal to the resolution of the RGBD texture.

In practice, the resolution may be around 1600x1600 pixels in the case of the Oculus

Quest, but a 2,560,000 vertex mesh will likely not render at interactive rates on the

Oculus Quest. Thus, the developer will likely specify a mesh resolution lower than the

resolution of the RGBD image with acceptable results. (The appropriate granularity of

the mesh may depend on the distribution and size of the items in the scene.) Until the

grid is deformed, it is not displayed to the viewer.

This mesh is then deformed on a new CPU thread. First, the implicit UV coordinate

of each vertex is used to sample into the depth component of the RGBD texture.With

no additional configuration, these depths are then used to displace each vertex towards

the viewpoint used to request the current content frame. By linearly interpolating from

the viewpoint position to the vertex’s initial position by the sampled depth, the vertex

will be aligned coincidentally with the surface of the captured object in the server scene.

The resulting mesh appears in Figure 7.8(a), and with the RGB data projected onto it,

137

(a) (b)

(c) (d)

Figure 7.8: a) The mesh is deformed by displacing each vertex towards the content
frame’s viewpoint according to the sampled depth. b) The RGB components of
the texture are projected onto the mesh from the content frame viewpoint. c)
The rendered result from the requested viewpoint. d) The rendered result from a
different viewpoint offset towards the left.

the mesh is textured as in Figure 7.8(b). If the user has not changed their viewpoint

since the content frame was requested, they will see the image in Figure 7.8(c). However,

if the user has changed their viewpoint in the meantime, they will see something similar

to the image in Figure 7.8(d).

138

Artifact Reduction

Note the smearing of the image around the boundaries of each object in Figures 7.10b&d.

These artifacts appear because the mesh is “connecting the dots” between vertices on

one object and vertices on another (or vertices corresponding to the far-plane), and can

be spatially misleading as the smeared fragments appear to represent a surface that does

not exist. While some sort of artifacts are to be expected near the objects’ boundaries

due to occlusion from the sampled viewpoint [Carmack 2013], steps can be taken to

reduce the impact of these artifacts.

Our solution to the smearing problem is to determine which quads overlap the seams

between objects of disparate depths, and duplicate these quads for each of the depths

between which the quad would otherwise stretch. To determine whether the quad

overlaps a seam, the developer specifies a depth discontinuity threshold. After each

vertex has been sampled for its depth from the RGBD texture, the depths of each quad

are compared to see if they contain a depth discontinuity. This is done by sorting

the four corner vertices of the quad by depth, and iterating through them. When a

jump in depth exceeds the depth discontinuity threshold, the list of corner vertices is

split and the quad is duplicated. Each of the corners corresponding to one of the quad

duplicates are considered “true” and are kept, and the remaining corners are guessed.

In the current implementation, the corners are guessed by averaging the true corners

depths (This could be improved by projecting the guessed corners to a plane produced

by sampling depth near the true corners). When the RGB texture is re-projected onto

this new mesh, the depth component is also sampled and compared against the depth

of the mesh onto which it is being projected. If the difference in depths exceeds the

depth discontinuity threshold, the fragment is discarded.

Figure 7.9 shows the result of applying our fix to the smearing problem. Note that

smearing in Figures 7.8 (b)&(d) are replaced by an empty space in Figures 7.9 (b)&(d).

This space actually occupies a smaller amount of the final image than the smearing

did, as colored fragments that existed along the smear now have depth-aligned quads

upon which they can be rendered. The space still corresponds to regions occluded in

the original view.

139

(a) (b)

(c) (d)

Figure 7.9: a) Before displacing by depth, the quads of the mesh are duplicated
when overlapping a depth discontinuity over a specified threshold. b) The RGB
components of the texture are projected onto the mesh, sampling the depth com-
ponent to determine whether the sample pixel belongs at the corresponding mesh
position, or discarded. c) The rendered result from the requested viewpoint. d)
The rendered result from a viewpoint slightly off-set to the left.

Background Removal

Often in data visualization scenes, the objects being rendered take up only part of the

view plane, leaving much of the screen as unrendered background pixels. Such regions

of the RGBD texture are assigned depths of 1. Having split the quads up by depth

discontinuity, we can now easily remove the background vertices before submitting the

140

(a) (b)

(c) (d)

Figure 7.10: a) The results of smear reduction with quads on the far-plane removed.
b) The RGB image projected only on the remaining mesh. c) The rendered result
from the requested viewpoint. d) The rendered result from a viewpoint slightly
off-set to the left.

mesh to the GPU, saving rendering resources (Figure 7.10).

Multiple Views

If the results of a single viewpoint are able to be rendered with rendering resources to

spare, then many of the silhouetting artifacts may be mitigated by superimposing more

content frames from offset viewpoints. Responsible candidates for multiple views could

be the viewpoints of the left and right eyes, or perhaps extrapolated projections for the

141

(a) (b)

(c) (d)

Figure 7.11: a) Two meshes placed at the far-planes of two offset viewpoints. b) The
two RGB images projected onto their respective meshes and rendered coincidentally.
c) The rendered result from the right-most viewpoint. d) The rendered result from
near the left-most viewpoint.

possible views. Even if none of the rendered viewpoints precisely correspond with the

user’s instantaneous viewpoint, the coverage of these multiple content frames will likely

fill many of the silhouette spaces (Figure 7.11). Another option is to assign different

views to foreground and background items by means of the Layer option (Figure 7.5).

Currently, several configuration options must be heuristically selected by the devel-

oper depending on the contents of the scene, such as the granularity of the facade mesh

or the tolerance for the depth discontinuity threshold. Future work may find automated

142

procedures for selecting these parameters dynamically based on viewpoint and contents

of the scene.

7.4 Performance Characterization

There are several metrics that can be used to characterize the performance of the tech-

niques described in this chapter and compare them against alternatives. Quantitative

metrics include such factors as delay time in the fetching of new data geometry and

remote rendering content frames, or screen-space error between a content frame facade

and a ground-truth rendering of the content. Qualitative metrics concern factors such

as user feedback on both the comfort of a remote rendering experience or ability to

make accurate judgements on the spatial structure of a 3D dataset.

In this section we provide a set of characterizations that can be used for describing

the performance of the methods found in this chapter, and designing future evaluations.

With each characterization is given an example technique that could be considered for

optimizing that characterization.

7.4.1 Data Streaming Performance Characterization

Since the information being transmitted in our Paraview-to-Unity Data Streaming tech-

nique is assumed to be a lossless communication of bytes describing geometric meshes,

we are primarily concerned with matters of time.

Data Server Sampling Delay (Time)

Changes in timestep or sampling parameters in Paraview require computation or disk-

reading of data, and will have some temporal cost. This cost can be measured as the

delta between the time a change is made in the Paraview state, and the results are

pushed into the socket connecting Paraview to Unity.

While this characterization is bound to the complexity of Paraview’s own processes,

large delays could be mitigated by contextually predicting changes the user may wish to

make to the Paraview state and pre-compute multiple sets of geometry for immediate

response.

Data Geometry Transmission Delay (Time)

Depending on the size of the data geometry (approximately equal to the complexity of

143

the mesh times the number of variables) and the network latency, there will be some

delay in the transmission of the data to the visualization system. This delay can be

measured as the delta between the time data geometry is submitted to the socket, and

the time that it has been fully loaded in the visualization system.

If there is substantial delay from large data geometry, the data stream could be

compressed before sending, or the pipeline could be extended to send and receive the

data in pieces, enabling the visualization system to begin handling subsets of the data

geometry asynchronously as the socket is read.

7.4.2 Remote Rendering Performance Characterization

The primary motivation for our approach to remote rendering over existing techniques

like ALVR is to prioritize responsiveness to head tracking, low motion-to-photon latency,

and provide a comfortable, non-cybersickness-inducing experience for wider audiences.

To this end, a key set of our remote rendering characterizations relate to user comfort

and the delay from the capturing of head-tracking data to the display of view-specific

imagery.

Admittedly, our technique avoids cybersickness by introducing a tradeoff in the

fidelity of the imagery. While we accept the sacrifice of a flawless reproduction of a

locally-rendered experience, it is still critical that remote rendering a visualization still

provides useful utility for exploring the data. Thus, a secondary set of characterizations

relate to user feedback on the usefulness of our remote-rendered visualizations, as well

as factors such as the pixel-per-pixel reproduction accuracy and delay in presenting new

perspectives of the data as the user explores the data space.

In this section we will provide a description of both the quantitative and qualitative

metrics that characterize both the issues of cybersickness and analytic fidelity.

Cybersickness, Quantitative Characterization

Viewer Instantaneous Framerate (Frames per second)

This characterization is the actual frames-per-second of the AR/VR client viewer app.

This framerate should be targeted to the max refresh rate of the client viewer device (e.g.

72Hz for the Oculus Quest) in order to avoid cybersickness. This measure primarily

144

describes the rate at which all the visible content frame facades can be drawn based

on instantaneous head-tracking data. The most direct factor influencing the Viewer

Instantaneous Framerate is the number of vertices in the combined set of active content

views.

In our implementation, the easiest way to improve the framerate is lowering the

grid dimensions for the content frame facades. Additional optimizations could likely

be developed for dynamically simplifying the facade meshes, such as content-aware

decimation. We’ve already taken some steps in this direction by employing the removal

of background quads (Figure 7.10).

Cybersickness, Qualitative Characterization

User feedback (User evaluation on comfort)

One of the reasons we are concerned with the previous Viewer Instantaneous Framerate

metric is to avoid cybersickness. However, we cannot overlook the importance of user

feedback on the experience. There may be unforeseen effects of certain remote rendering

techniques on user comfort beyond framerates, and so gathering some measure of users’

experience may help in refining the chosen techniques and parameterizations.

There are several methods for determining degrees of cybersickness, such as adminis-

tering questionnaires, tracking postural sway, and evaluating physiological state [Reben-

itsch and Owen 2016]. As we are primarily interested in the amount of cybersickness

introduced through our remote rendering methods, and cybersickness-related experi-

ences vary between people, it is important to compare a user’s experience with remote

rendering of a particular scene on a specific affordable untethered AR/VR device against

experiencing the same scene rendered locally on the same head mounted display.

One possible example of another contributing factor to cybersickness could be situ-

ations where the remote-rendered scene contains many glyphs or other features that are

small enough to sometimes fall between the vertices of the content frame facade. In such

circumstances, some subset of glyphs may not appear during occasional content frames.

This would result in a “popping” in-and-out of some foreground elements, which may

have an undesirable effect on the user. If this is found to be a contributing factor, this

issue can be mitigated by increasing the resolution of the content frame facade.

145

Analytic Fidelity, Quantitative Characterization

Content Framerate (Content frames per second)

This characterization describes the rate at which new content frames are displayed to

the user. The higher this measure, the more quickly negative artifacts from changes in

viewpoint will be reduced, but also the faster changes to the remote visualization will

be made visible to the user. The developer can chose to request new content frames as

frequently as they deem appropriate, keeping in mind that if the content request rate

exceeds the reciprocal of the Content Frame Fetch Delay, multiple content frame facades

may need to be generated simultaneously, which may tax the computational resources

of the device.

For our implementation, we’ve capped the content framerate per-view to the recip-

rocal of the Content Frame Fetch Delay by waiting to send a content frame request until

the last content frame fetch has been completed. This was to avoid back-logging content

frame responses. However, the Content Framerate could be increased depending on net-

work latency by intelligently queuing requests and responses based on monitoring the

expected sub-characterizations of the Content Frame Fetch Delay. This way, content

frame responses could be timed to arrive approximately when the last content frame

facade has finished generating.

Content Frame Fetch Delay (Time)

The entire round-trip time from the moment of making a content frame request to the

moment that content frame’s facade is made visible to the user is dictated by a number

of sequential sub-characterizations.

• Content Frame Request transmission Delay: This is the measure of the

time it takes to collect the viewpoint parameters on the client and transmit them

via a socket to the server. As the Content Frame Request is a simple struct on the

order of 100 bytes, this sub-characterization is entirely dependent on the network

latency.

• Content Frame Rendering Time: This is the measure of the time it takes to

render a single frame of the server-side visualization scene from a content frame

request viewpoint. Since the client does not need a unique content frame per

146

second, this rendering time does not even need to maintain a VR-level framerate

(60-90 frames per second, or 0.17 to 0.11 seconds per frame) for remote-rendering

purposes. However, if many clients are connected, these rendering times may

begin to add up.

• Content Frame Response transmission Delay: Like the first sub-characterization,

this measure is largely dependent on network latency, but can also be impacted by

the size of the content frame response RGBD data. This can be mitigated by both

reducing the resolution of the content frame, and compressing the RGBD data.

Both of these come with tradeoffs, however: lowering the resolution will directly

impact the quality of the viewer’s experience, and compression will require decom-

pression on the client viewer, which may run on hardware with greater overheads

for handling decompression.

• Content Frame Response Unpacking Delay: This accounts for any decom-

pression and re-assembling of the RGBD data into a texture that can be sampled.

This may be largely impacted by hardware capabilities, as well as visual complex-

ity of the RGBD data when compression has been used.

• Content Frame Facade Generation Time: The factors contributing to time

required to generate a content frame facade depend primarily on implementa-

tion. In our implementation, this time is approximately linear to the number of

grid vertices in our DIBR mesh, but has a rather high linear coefficient from the

determination of quad duplication.

Viewer Resolution (Content Frame pixels per Screen pixels)

This is a measure of how much pixel density is lost from the original visualization

system, primarily due to altering the content frame resolution multiplier. By default,

the content frame resolution multiplier is 1, which means that the content frame provides

on RGBD pixel per viewer screen pixel. Assuming the user does not move their view

significantly towards the facade before a new facade is produced, the RGB resolution of

the facade will remain approximately equal to the viewer’s screen resolution. However, if

the resolution multiplier has been reduced in order to improve the Content Frame Fetch

147

Delay (and subsequently the Content Framerate), the resolution of the facade will suffer.

It is up to the developer to determine contextually whether the pixel resolution of the

facade is worth sacrificing the rate of new content frame acquisitions.

It is worth noting that this only relates to content frame pixels per screen pixel,

and if the user moves their viewpoint closer to the remotely-rendered content, new fa-

cades will display the same region of the visualization more clearly than the same region

viewed from afar.

Viewer Missing Pixels (Difference in Instantaneous Viewer Pixels vs In-

stantaneous Ground Truth Pixels)

This is a quantitative measure of how much visual information is lost from remote

rendering as the user’s viewpoint changes. In our implementation, this is most acutely

related to the cut-out silhouette regions (For example, the white regions of Figure 7.11d).

To measure this characterization, a test could be conducted rendering a set of geometry

on both the server and the client, and capturing both the remote rendered content frame

facade and the locally-rendered geometry, and calculating a difference heuristic for the

two frames.

This measure should be expressed as a function of total displacement between the

instantaneous viewpoint and the requested viewpoint for the current content frame. The

result will of course vary according to the visualized data and the nature of the view

position. According to Carmack, “A scene with no silhouette edges, like the inside of

a box, can be warped significant amounts and display only changes in texture density,

but translation warping realistic scenes will result in smears or gaps along edges” [2013].

Thus, calculating average and worst missing pixel metrics for a variety of scene types

would be useful for guiding a developer to target appropriate content frame rates for

their type of visualization.

As shown in Figure 7.11, one good way to mitigate missing pixels is to add additional

offset views. Also, the mixing pixel metric can be expected to increase as the current

viewpoints deviate from the requested viewpoints, and so choosing settings to increase

the content frame rate can also help.

148

Analytic Fidelity, Qualitative Characterization

Viewer Negative Visual Artifacts - Analytical Accuracy (User evaluation on

observations of data structure)

It is critical that our techniques for remote rendering 3D data visualizations provide

utility for actually viewing 3D data visualizations. A key motivation for pursuing head-

tracked, stereo remote rendering of visualizations is based on Aygar, Ware, and Rogers’

assessment that these features are important for understanding the 3D structure of many

datasets [2018]. Thus, we want to be mindful that we’re maintaining that analytic utility

as we transform the data into a remotely-rendered facade.

Aygar et al. describe experiments that were used for determining the impact of

stereoscopic and motion-based techniques on users’ perception of the spatial structure

of 3D datasets. Such experiments could be adapted for comparing how our Remote Ren-

dering techniques impact 3D perception as opposed to locally-rendered visualizations,

or even other remote rendering approaches like 360 video streams. Another approach

could be getting expert user feedback from users who have a strong familiarity with

the data being visualized to determine how much analytic fidelity is being lost through

remote rendering.

7.5 Results

We’ve reached several critical milestones in the development of both the Data Stream-

ing and Remote Rendering components of this research. We’ve had opportunities to

demonstrate both systems to various audiences, and have captured initial results for

several of the aforementioned performance characterizations. In this section, we will

describe our progress on all these fronts.

7.5.1 Implementation of Data Streaming

Our current Data Streaming implementation consists of two parts: A plugin for Par-

aview, and C# code for receiving the data stream from Paraview in Unity applications.

The Paraview plugin is available in our research lab’s GitHub repository as a utility

that can be downloaded in an XML format and loaded into any instance of Paraview

149

5.6.0. Many of our team members are actively exploring new datasets in Paraview and

using our data steaming code locally on their systems for quickly accessing Paraview

data objects in our Unity Artifact Based Rendering application. This Paraview plugin

can also transmit data objects to any application that can read VTK datasets, such as a

python script. Such an application need only open up a listener on a TCP port and wait

for a connection on that port from Paraview. The Plugin will transmit a label string

for the incoming data object, followed by an ASCII encoding of the VTK data. In this

way, the plugin can serve many Data Streaming workflows, not limited to Unity-based

systems.

Currently our C# implementation of the receiving end of the Data Streaming tech-

nique is integrated into our Unity ABR Engine GitHub repository. The Paraview-

DataListener script receives the labeled VTK data objects and converts them into

ABR-ready data meshes.

7.5.2 Demonstration of Data Streaming

In September of 2019, the National Science Foundation held an unveiling event for a new

supercomputer at the Texas Advanced Computing Center (Figure 7.12). Our team of

collaborators from Chapter 5 worked together in Austin to prepare a demonstration of

multiple timesteps of bio-geochemistry data from the Gulf of Mexico on the supercom-

puter being sampled to streamlines and glyphs, which were sent in real-time to a laptop

attached to an HTC Vive Pro which we used to show visitors an ABR visualization

designed by our artist.

Thanks to our Data Streaming technique, we were able to present to the public

real-world examples of supercomputer-scale datasets in an interactive virtual reality

visualization.

7.5.3 Performance & Discussion of Data Streaming

Paraview was running on a single node of Frontera, loading in a timestep data from

disk, doing the visualization and passing the data to Unity. In our use case, we were

only interested in a relatively small subset of the data - the gulf, which is a small

fraction of the overall, world-wide simulation results. We culled that subset off-line, so

150

(a) Checking out one of the supercom-
puters at the Texas Advanced Computing
Center, home of Frontera, the supercom-
puter we used for data streaming

(b) An ABR visualization being shown to
many journalists, researchers, and NSF
representatives via data streaming from
Frontera during an NSF event

Figure 7.12: Two images taken by photographers in Austin during an NSF event
unveiling a new supercomputer called Frontera. At this event we presented a demo
of live data streaming from Frontera to a laptop running an ABR visualization.

the run-time Paraview task - loading in the subsets and generating the geometry - was

well within the capability of a single node, generating new time steps of visualization

output to Unity every few seconds. In this particular case, the task being performed

didn’t necessitate a supercomputer, but rather a strong compute node with immediate

access to the data. The advantage here is in not having to ship the all the time steps

of the volumetric data out of the computer room and, instead, ship only the sampled

geometry required for visualization, which are orders of magnitude smaller.

Our two performance characterizations for Data Streaming, Data Server Sampling

Delay and Data Geometry Transmission Delay, are both highly dependent on the com-

plexity of the datasets with which we work. When using small pieces of procedurally-

generated test data, both delays can be a matter of milliseconds. However, larger

datasets often result in over a second of delay for both sampling and transmission.

During our Supercomputer demonstration, the re-sampling of streamlines and pointsets

took approximately 4 seconds of supercomputer time for each new timestep, and the

transmission of the resampled streamlines and pointsets took about 0.25 seconds. How-

ever, the transmission of the bathymetry of the Gulf of Mexico took about 5 seconds

due to its high-resolution surface mesh grid of over a million points, each with normal,

height, and longitude/latitude variables. Fortunately, we only needed to transmit the

151

bathymetry once as it did not change with new timesteps.

Both of these metrics are highly dependent on how spatially complex the data is,

and how many variables need to be sampled or transmitted. It’s worth remembering

that the size of a VTK dataset scales linearly with the number of variables present in

the dataset, and we have often found it prudent to prune down the variables we aren’t

presently interested in before configuring the data stream.

In a more complete application, users could immersively explore the entire world-

wide dataset by using many supercomputing nodes to handle sampling, and feeding

viewport information to the supercomputer so it would prioritize sending the portion of

the visualization sample geometry most likely to be seen. Such a system could be end up

with a streaming solution directly analogous to the remote rendering approach, where, as

the user moves their head, they might see a blank area that would fill in as newly revealed

data is received. This would required the building of a distributed application with

subprocesses attaching to the subprocesses of Paraview across the distributed system,

receiving the data in a many-to-many parallel fashion, then gathering and transmitting

prioritized subsets of it based on viewing information being received. Additionally

there could be feedback directly to distributed Paraview also to perform user-requested

sampling, such as selecting iso values or seeding streamlines.

7.5.4 Implementation of Remote Rendering

The Remote Rendering technique, as described in this paper, has been developed and

made available as both an open-source GitHub repository and a Unity Package. By

including this code in a Unity project containing a data visualization system, a scene

can be quickly configured as a Remote Rendering server. And by adding the code to

an Oculus Quest, Magic Leap, or any other interactive scene, a client viewer can be

created.

The Remote Rendering source code depends on another open-source codebase avail-

able on our research lab’s Github, a generalized Unity Utilities library we’ve been de-

veloping in parallel. This provides useful logic such as queuing Unity-specific code from

asynchronous or threaded code. (Many Unity methods and classes can only be accessed

on the rendering thread.)

152

Figure 7.13: An ABR visualization being remotely rendered into a Magic Leap to
be viewed with a 3D printed bathymetry.

We’ve already had multiple team members use this Remote Rendering code to create

their own client viewers. The Magic Leap viewer was created by one student in less

than an hour (Figure 7.13), and another student quickly produced a 2D desktop remote

rendering viewer that lets the user interactively orbit around the remotely rendered

content with a click-and-drag of the mouse.

We’ve also integrated Remote Rendering into our ABR application, so any instance

of ABR can serve as a remote rendering server.

7.5.5 Demonstration of Remote Rendering

We have demonstrated Remote Rendering in the form of an interactive group design

discussion across multiple geographic regions in May of 2020. In this demonstration,

we’ve used Data Streaming to transmit Paraview data hosted in one midwestern city

to a computer running ABR in another midwestern city, and had 7 collaborators inter-

actively viewing the same visualization simultaneously in VR, AR, and 2D on Oculus

Quests, Magic Leaps, HTC Vives, and Windows & OS X desktops from several US

states (Figure 7.14).

153

Format

This demonstration was performed in the setting of our weekly Artifact-Based rendering

team meeting, between regular participants in multiple states (including Minnesota,

Texas, and Massachusetts). These meetings often consist of design discussions about

how best to apply ABR visualization techniques to new datasets, and previously such

discussions have been conducted through screen-sharing using Zoom or Skype. However,

through the introduction of our remote rendering support and a new, under-development

ability to interact with the ABR design interface remotely, we were able to interact and

explore the developing visualization more fluidly than before.

(a) Two Desktop remote rendering clients showing different views (Left: a Zoom
screen-share of a Windows client. Right: a Max OSX client.)

(b) A view from an Oculus Quest client. (c) A view from a Magic Leap client.

Figure 7.14: Our remote design discussion about an asteroid impact dataset being
viewed on many types of devices concurrently.

154

In this group design discussion, we considered several possible visualization design

options for an asteroid impact dataset across multiple timesteps. The design discussion

included our software engineering team, an Artist, a collaborator who had been directly

involved in the development of the scientific data, and other participants from multiple

disciplines. Our main discussion points revolved around the coloring and sampling of the

glyph field encoding the air pressure distribution following the simulated impact. And

for comparison, we dynamically switched to other ABR-visualized datasets including

the Gulf of Mexico dataset.

Based on real-time feedback, we updated the glyph sampling and data visualization

on-the-fly, and participants were able to see the changes in interactive VR, AR, and

with 2D desktop views. Participants were also able to explore their own personal view

of the data with tracked controllers, image-tracked props, or their computer mouse. We

also provided a feature where users could click or hold a button on a tracked controller

(in the case of the Vive, Magic Leap, and Oculus Quest) to broadcast a spherical cursor

to the other viewer applications as a way to draw attention to different regions of the

visualization.

Results

We ended up maintaining at least 6 remote rendering clients for 30 minutes, and at had

up 12 simultaneous client connections for testing purposes. Client apps were connected

via residential internet connections, and each had anywhere from one to four content

frame views (fewer are required for monoscopic desktop clients). We had two Magic

Leaps, three Oculus Quests, one HTC Vive connected to a Windows laptop, three OSX

clients, and three Windows Desktop clients.

Instantaneous frame-rates of at least 60 fps were reported, except in cases where

Quest users adjusted settings for higher resolution quality, which would in some in-

stances drop the framerates below 60, causing noticeable tracking lag. Based on data

collected from the server application, content framerates generally varied from 3 content-

frames-per-second to 0.2 (one content frame update every 5 seconds), depending on

requested image resolution, network latency, and device capabilities relating to unpack-

aging the content frame response.

Feedback on the general remote rendering experience was largely positive. The

155

ability for each participant to re-orient their view, even just on the desktop applications,

was reported to be a major improvement from simply watching a screen-share session.

Combined with the remote access to the ABR design UI, our artist was able to quickly

jump in and make tweaks to colormaps while explaining to the rest of the team what

she was doing while everyone watched from their own perspectives. The HTC Vive user,

who had worked on the production of the datasets we were viewing, reported a very

smooth and comfortable VR experience, but also reported that some glyphs seemed to

disappear occasionally depending on their size (this is a problem that sometimes arises

when the size of the facade mesh quads exceed the size of the glyphs). Quest viewers

also reported a smooth, comfortable experience with the exception of one bug where

clients were being auto-disconnected after 3 seconds of no new requests, causing them

to re-connect with occasional momentary tracking errors, causing startling jumps in the

remote-rendered content.

By the end of the session, participants looked forward to future collaborative design

sessions using a similar process. The artist even spoke of looking forward to future

remote workshops or tutorials where artists could work together on visualization design

using applications like the ones used in the demonstration. None of our AR / VR users

reported motion-sickness or discomfort beyond the aforementioned bug (which has since

been fixed).

7.5.6 Performance & Discussion of Remote Rendering

Data Collection

While strategies for collecting metrics for each of the characterizations in Section 7.4 is

part of ongoing work, we have been able to collect results for several of the time-specific

characterizations under a number of different parameters.

To collect the data in this section, we used an Oculus Quest as the client viewer, with

a 1440 × 1600 pixel, 72 hz display per-eye. For networking, the quest was connected

to a Verizon LTE mobile hotspot. As a remote rendering server, we used a desktop

PC with an Nvidia GTX 1070 graphics card, 16 GB of RAM, and an Intel i7-4790K

Processor. This computer was connected via ethernet to a Century Link 100 Mbps

internet connection. While both nodes were geographically located in Richfield, MN, the

156

Quest was requested and receiving content frames through a cellular network, similarly

to how future 5G-enabled AR or VR displays may function.

In Figure 7.15, we can see three different values selected for both the RGBD image

resolution and the the facade mesh resolution. From left to right, the pixel resolution

increases, and from top to bottom the facade mesh resolution increases. The center is

the setting closest to that most often selected for our demonstrations. In Table 7.1, You

can see nine columns, each displaying the specific resolutions, as well as the mean and

standard-deviations for several of the time-related characterisations from Section 7.4

collected across approximately half a minute of data capture. Note that for this collec-

tion, we only requested a single view, and only requested an update once the previous

content frame had been fully realized as a facade.

Only in one high-facade-resolution case do we ever see viewer instantaneous framer-

ate drop below 70 FPS. When multiple views are being drawn with high facade resolu-

tion, viewer instantaneous framerate will often suffer, as the number of rendered vertices

can exceed the Quest’s recommended workload.

For the metrics measured in milliseconds, note that Content Frame Fetch Delay

describes the duration from when tracking information is sent in a content frame request

to the moment it first becomes visible to the user. During this duration, a number of

different process occur in order, including network communication, rendering on the

server, and construction of the facade. In this specific data collection, we report both

the entire Content Frame Fetch Delay as well as the server time spent rendering and

the content frame facade generation time.

As our focus has been on optimizing the Viewer Instantaneous Framerate, we have

not focused on optimizing the Content Framerate. To calculate the actual Content

Framerate in our example, you can divide the Content Frame Fetch Delay by 0.001. But

keep in mind that multiple content frames can be fetched and processed asynchronously.

With multiple views or careful timing of requests, a higher Content Framerate could

be achieved. Indeed, the primary bottleneck for Content Framerate will likely be the

Content Frame Facade Generation step, as this step is costly for the client device.

Perhaps by offloading some of the Content Frame Facade Generation to the server

could alleviate the burden on the client device.

top=1.5in, left=1in,right=1.5in,bottom=1in

157

Figure 7.15: The visual results of adjusting two key remote rendering parameters,
the pixel resolution of the RGBD content and the vertex-resolution of the facade
mesh. For each parameter, three values were selected. Note that when the facade
resolution is low, blocky gaps are more likely to appear, and glyphs have a higher
chance of disappearing.

158

Facade Resolution 50 x 50 50x50 50x50 100x100 100x100 100x100 512x512 512x512 512x512

Viewer Resolution % 33 66 100 33 66 100 33 66 100

Viewer Resolution 450 x 407 887x803 1346x1218 444x402 887x803 1351x1223 444x402 888x803 1352x1223

Samples collected 98 90 77 90 79 78 12 16 22

Viewer Instantaneous
Framerate (FPS)

µ:71.45
σ:4.22

µ:71.94
σ:5.4

µ:72.36
σ:2.23

µ:72.33
σ:7.27

µ:73.99
σ:13.44

µ:72.83
σ:3.81

µ:68.76
σ:10.01

µ:71.91
σ:3.2

µ:72.57
σ:3.58

Content Frame
Fetch Delay (ms)

µ:350.08
σ:65.07

µ:359.11
σ:14.77

µ:498.39
σ:36.03

µ:450.09
σ:18.93

µ:465.99
σ:27.46

µ:588.74
σ:36.15

µ:3376.17
σ:360.91

µ:3302.56
σ:274.55

µ:3379.95
σ:78.28

Content Frame
Rendering Time (ms)

µ:42.63
σ:4.19

µ:45.49
σ:5.33

µ:50.7
σ:5.89

µ:44.58
σ:4.83

µ:46.81
σ:4.99

µ:51.26
σ:7.33

µ:50.58
σ:7.17

µ:51.19
σ:10.91

µ:59.68
σ:5.53

Content Frame Facade
Generation Time (ms)

µ:33.17
σ:3.82

µ:31.99
σ:0.76

µ:31.91
σ:0.57

µ:130.6
σ:9.39

µ:126.82
σ:5.36

µ:125.03
σ:6.34

µ:2670.92
σ:285.29

µ:2605.44
σ:213.56

µ:2529.64
σ:14.48

Table 7.1: Results from collecting approximately 30 seconds of data from capturing the parameters in Figure 7.15.
For this collection, only a single view was being rendered, and a new content frame was only requested after the
previous content frame facade had been presented to the viewer. Note that, as described in Section 7.4, Content
Frame Fetch Delay is composed, in part, of Content Frame Rendering Time and Content Frame Facade Generation
Time. Also note that we are not tracking Content Framerate, as we are not currently focused on optimizing this
metric.

159

Cybersickness

Our initial motivation for researching beyond existing remote rendering techniques like

ALVR was to mitigate cybersickness from motion-to-photon delay. Thus, we represented

remote rendering content as 3D geometry and prioritized the instantaneous framerate

of the viewer. So did the steps we took accomplish our goals of reducing cybersickness?

We presented development demonstrations of our remote rendering technique at

various stages to the same team members who reported cybersickness using ALVR. In

all cases, we displayed remotely-rendered imagery of the Gulf of Mexico dataset on the

Oculus Quest.

(a) (b)

Figure 7.16: Varying degrees of distortion from an early stage of the remote ren-
dering project. (a) Small amounts of smearing between glyphs and the background
when the user has moved a few centimeters from the requested viewpoint. (b) Large
amounts of smearing when the user has moved about 90 degrees around the scene
from the requested viewpoint (an extreme example).

Our first development presentation of our new remote rendering showed the content

frame facade against a solid background with no artifact reduction (Figure 7.16). User

feedback reported that while there didn’t seem to be any obvious issues with motion-to-

photon delay, the smearing distortion combined with the lack of environmental reference

frames in the gray void still resulted in a disorienting experience.

Based on this user feedback, we added several artifact reduction techniques, such as

smear removal (Described in Figure 7.9) and multi-layer rendering (Figure 7.5), along

with a simple room environment locally rendered in the background of the client viewer

(Figure 7.17). When we demonstrated these improvements to our cybersickness-inclined

160

(a) (b) A view from a Magic Leap client.

Figure 7.17: (a) The result of adding a locally-rendered room environment with
smear removal integrated, leaving silhouette holes in occluded geometry rather than
3D smears. (b) Additional artifact reduction by using separate remote rendering
views for Surface and Glyph layers in Unity

users, they reported that the experience was “much better” than using ALVR, and did

not report any disorientation or nausea.

In all these demonstrations, we have successfully prioritized maximum framerates on

the Oculus Quest. Depending on quality settings, we were able to maintain 72 frames

per second on the Quest, with only the Quest’s own motion-to-photon delay since the

geometry visible to the user was being dynamically projected based on the latest head

tracking data.

In this way, we met our primary goal of alleviating cybersickness in remote-rendered

data visualizations.

Analytic Fidelity

As previously discussed, prioritizing responsiveness to head tracking data has required

some trade-offs, such as decreased pixel resolution, artifacts around depth disconti-

nuities, and delay in acquiring new content frames. We’ve found that these are all

interrelated trade-offs, and any of them can be improved at the cost of the others.

For most of our demonstrations, we chose a pixel multiplier of 75%, which resulted

161

in rendering a 1200x1080 pixel image for the Quest’s 1600x1440-per-eye display. We

chose a mesh resolution of 100x100 quads. And we rendered multiple views to resolve

most depth artifacts: for the left eye, we rendered one view of the Glyph layer, and one

view of the Surface layer; and for the right eye, we rendered both layers together. We

found these parameters to be satisfactory for the visual fidelity of our visualizations,

and resulted in a Content Frame Fetch Delay of about 1.5 seconds. By staggering when

each of the four views is requested (and subsequently staggering when the new content

frames are displayed), we get about three Content Frames per second.

However, the Content Frame Fetch Delay is not consistent, and depends on the

content of the scene for two reasons. First, we’ve discovered that depending on the visual

complexity of the frame (e.g. amount of non-background pixels and high-frequency

details), compressing and decompressing the RGBD buffer may actually take longer

to package, transmit, and unpack the RGBD data than sending uncompressed RGBD

data, even though the size can sometimes be 10 times larger. Second, depending on

the distribution and size of foreground and background objects, more mesh quads may

contain several depth discontinuities, and thus more quads may need to be injected,

adding additional computation time into the generation of the Content Frame facade.

In the end, our users mostly did not report the visual fidelity or rate of new content to

be detrimental to a useful group collaboration, and found remote rendering to provide a

much more favorable collaborative experience over simply viewing a 2D, non-interactive

screen share. One participant pointed out that sharing 2D content over Zoom or Skype

also can have analogous artifacts like compression artifacts or inconsistent frame rates.

While participants agreed that they would prefer a locally rendered experience, the

ability to share a remote a multi-user experience including devices like the Quest and

Magic Leap is a valuable tool.

There is certainly room for improvement, for example the reports of occasionally

missing glyphs in the group design session. This problem can be mitigated by increasing

the vertex density of facade mesh, at the cost of instantaneous framerate. Future work

is expected to produce more efficient and accurate facade meshes.

While we believe that there is a lot of potential to improve the visual fidelity of our

technique, we have concluded that we have preserved a useful degree of utility in spite

of the trade-offs introduced by our cybersickness prevention approach.

162

7.6 Roadmap

While not in the scope of this chapter, there are a number of promising next steps for

generalizing and improving remote rendering, and better understanding how different

factors impact user experience and performance.

7.6.1 Formal Evaluation of Performance Characterizations

As work progresses in Remote Rendering, it will be important to develop an approach

to evaluating the successes and uncover unexpected regression. This will be important

to do both quantitatively (e.g. measuring the changes in framerates, pixel differences,

etc) and qualitatively (e.g. formally collecting user feedback on analytic fidelity and

cybersickness).

An initial step towards developing a reproducible evaluation of the performance of

a remote rendering implementation will be integrating profiling tools into the software.

The current software provides instantaneous timing metrics for several of the afore-

mentioned performance characterizations, but further work can be done to enable the

collection of that data over time along with other related factors such as amount of user

movement or measures of scene complexity. Additionally, a method to record times-

tamped user feedback on cybersickness would be valuable to cross-reference with the

performance metrics.

A second step towards reproducible evaluation will be determining the variation

caused by different scenes. A diverse set of scenes should be selected containing different

situations that may adversely affect the success of remote rendering. Examples may

include: Scenes with many large overlapping objects, scenes with a large field of tiny

glyphs, scenes surrounding the viewer, monochromatic scenes, scenes with objects that

traverse from the foreground to the background. As different types of scenes are found

that provide varying results, they should be curated for iterative testing.

By performing these two steps, new techniques can be refined using these tools as

a form of regression testing, as well as a means of uncovering unexpected opportunities

for improvement. And by correlating qualitative user feedback on cybersickness with

metrics such as missing pixels or content framerate, a better understanding of remote

rendering’s impact on cybersickness may arise.

163

As new methods are refined, it will be important to turn the focus towards user

evaluations. Ultimately remote rendering serves as a tool for users in the absence of

opportunities for locally rendered content. To make a case for the success of a remote

rendering technique, it must be shown how similar a user’s remote rendering experience

is to a locally rendered experience, both in terms of cybersickness as well as utility for

performing tasks. We can use methods for determining degrees of cybersickness, such

as administering questionnaires, tracking postural sway, and evaluating physiological

state [Rebenitsch and Owen 2016]. We can also measure impacts on spatial perception

with approaches such as the experiments run by Aygar, Ware, and Rogers to assess

the impact of stereoscopic imagery on a user’s perception of the 3D structure of spatial

datasets [2018].

7.6.2 Further Development

We expect that through testing and evaluation, many new refinements and approaches

will emerge, but just from our initial research, we have several recommendations for

next steps in software development.

Facade Generation Improvements

There are a number of areas where the DIBR technique described in this chapter can

be optimized for boosts to the performance of this remote rendering implementation.

• Perform some facade generation on the server: We believe there may be

benefit to moving much of the facade generation logic to the server, and packaging

information about the facade mesh with the RGBD data. By not requiring the

mesh deformation to occur on the client device, several of the following improve-

ments may become more viable.

• Floating-Point Depth: Currently, the depth component of the RGBD image

is 8-bits. In other words, the depth being used on the client side is split up into

255 evenly spaced bins between the eye and the farplane. By either transmitting

higher-resolution depth information to the client or computing the mesh displace-

ment on the server, the facade can be made smoother and have fewer artifacts

such as the “stepping” seen in Figure 7.17 (right).

164

• Object Edge Detection: With more computational resources, objects that fall

between the facade mesh vertices could be detected, ensuring that new quads can

be more reliably injected for objects that appear at different depths.

• Dynamic Mesh Resolution: While detecting objects, the system could de-

termine areas where a higher number of polygons are necessary, and determine

other areas as candidates for mesh decimation. For example, regions with high-

frequency depth details could be served by higher numbers of small quads, where

large flat surfaces may need only a few quads.

• Normal-Based Quad Alignment: In Figure 7.12, note that the quads along

object edges are view-aligned, whereas internal quads are more accurately aligned

with the surface of the represented object due to all for corners being “pinned”

by depth values. In the current implementation, injected quads along depth dis-

continuities don’t have depth samples for each corner, so some corners are just

guessed from the average of the known corner depths. This results in sometimes

noticeable “tag” shapes along the edge of objects. These artifacts could be allevi-

ated by calculating a plane from the average normal of the object shown on the

quad, and projecting the guessed corners onto that plane.

Compression Techniques

Currently, the only compression we’ve used for reducing the RGBD data is C#’s gzip

library. A much more fitting approach would likely be to integrate techniques used for

video streaming. We’ve already begun a collaboration with a researcher responsible

for some cutting-edge work in 360 video streaming for VR [Qian et al. 2018]. We are

interested in seeing how video streaming techniques can be integrated into Depth-Image

Based Rendering.

One area to be considered is the necessity of lossless depth data. If the depth

information is used to build a facade on the client and the depth or color information

has been compressed in a lossy manner, it may result in the edges of objects bleeding

into one another, and compression artifacts may manifest themselves spatially, perhaps

impacting user comfort.

165

It may be found that video compression techniques will need to be modified to

prioritize accuracy around regions of depth discontinuities.

Interaction Methods

Our implementation allows dynamic viewer-side reorientation of the remotely rendered

content. This works because new content frames are requested relative to the Remote

Rendering Client Prefab, to which the currently visible content frame facades are par-

ented. So even though new content frames arrive with some amount of delay, they

integrate smoothly into a dynamically moving view.

However, we do not presently support any user-driven changes to the actual server-

side content. We do see benefit for many such interactions, such as moving cutting

planes, adjusting streamline seed positions, or insertion of annotations. If we simply

transmit user input events to the server, such actions will only appear after a delay at

least equal to the Content Frame Fetch Delay. Such a delay may make it difficult to

precisely interact with objects.

Thus, a system may be required to display a proxy of the changes introduced by

the interaction while the viewer waits for the result of the interaction to be computed

and remotely rendered. For example, the user may see a locally-rendered cutting plane

indicator while adjusting its position, and the locally-rendered indicator would be hidden

once the change is reflected in a new content frame.

A more general case to consider is the problem of showing remotely-rendered avatars

of the user’s hands or hand-held virtual tools. One solution that could be implemented

with our existing tool would be to render the scene minus the hands (via layering) with

one Remote Rendering Client Prefab, and then use another Remote Rendering Client

Prefab parented to each hand, only requesting the corresponding hand imagery (again,

via layering). On the Server side, A Remote Rendering Server Prefab could be similarly

parented to the server-side hand objects that are being driven by hand-tracking events

transmitted from the client. While visual changes to the hand avatars would be delayed,

their movement would be locked to the user’s tracked hand positions.

At this point it would seem that every type of interaction would need to be considered

individually, but perhaps a generalized approach could be designed.

166

Collaboration Tools

As we consider a specific user’s interactions, we also want to consider how interactions

are presented to other collaborators who are simultaneously viewing the same scene.

A first step towards this would be incorporating and propagating user avatars to

co-viewers. For example, user viewpoints can be shared with other viewers by showing

a representation of their VR headset relative to the remotely rendered content. (It may

then be worth considering limiting the degrees of freedom a user has for changing their

viewpoint to avoid confusion!)

A next step would be integrating spot-lighting techniques, like laser-pointers or

per-viewer regions of interest. These could either be applied directly to the remotely-

rendered content (e.g. a colored flashlight used for projecting color onto the visualiza-

tion on the server, to be captured by the remote rendering process), or independently

rendered overlays (e.g. a 3D line showing the path of another user’s pointer).

The design of good collaboration tools may be as complex a problem as actually

developing their functionality. Many approaches have been demonstrated for different

types of remote 2D collaboration indicators, such as Zoom whiteboards and Google

Docs. For VR design collaboration, Unity has provided some examples of shared inter-

action techniques [Thomson 2019], but more research into viable techniques is recom-

mended.

7.7 Conclusion

Just during the time it has taken to complete the work in this chapter, a number

of industry leaders have made announcents regarding a number of remote-rendering

related products. Amazon has announced Wavelength [Amazon 2020], a service that will

use Amazon Web Services to offer remotely-rendered services to 5G devices, including

VR/AR wearables. Nvidia has begun accepting application for accessing their new

CloudXR SDK for creating AR and VR remote-rendering applications for 5G and WiFi

streaming [Nvidia 2020]. And most recently, Qualcomm has announced its partnership

with numerous other companies to build new 5G Edge-rendered AR and VR devices

with its new processor over the next 5 years [Qualcomm 2020]. Clearly, remote rendering

is just taking off, and the opportunities for remote-rendering research will only increase.

167

In light of all the work in the Remote Rendering space unfolding, we did not attempt

to single-handedly solve the general problem. We instead focused on the specific problem

of tackling cybersickness and analytic fidelity in the context of visualizing 3D scientific

datasets. Moving forward, the techniques described in this chapter may mesh well with

other upcoming advancements to build hybrid workflows that make data visualization

a more collaborative and accessible resource to a wider audience.

Chapter 8

Conclusion

In this chapter, we present a final discussion of the dissertation, including a review of

directions for ongoing and future research as well as a review of our key contributions

and conclusions.

8.1 Discussion and Ongoing Work

The two works presented in chapters 5 - Chapter 7, Artifact-Based rendering and Re-

mote Rendering, have come a long ways and are continuing to provide great utility in

our ongoing research. In addition to enabling new types of research, we also see much

potential in continued research and development upon these techniques themselves. In

this section we will review and expand on the future work discussed in these latter

chapters.

8.1.1 Artifact Based Rendering

As we completed our initial development for the Artifact-Based Rendering engine, we

began welcoming more researchers into the team. Many of these ”Future Works” are

already under development and show great promise as upcoming publications.

168

169

Advanced Artifact-Based Techniques and Style Inference

In our related work in Chapter 5, we referenced a number of artistic and non-photorealistic

techniques that served as motivation for exploring artist-driven data visualizations. A

natural next step would be to draw these tehcniques into the fold of what ABR has to

offer.

As an additional example, Gorla, Interrante, and Sapiro show some inspiring work

in synthesizing textures across arbitrary 3D surfaces, and even blend naturally between

textures based on any function across the surface [2003]. Implementing such algorithms

would provide an excellent foundation for data driven artifact-based rendering of iso-

surfaces.

As techniques like these further bolster ABR’s flexibility, an exciting next step would

be to refine a process of Style Inference. Similar to the 2D approach of “Image Analo-

gies” [Hertzmann et al. 2001] where Hertzmann et al. can take the artistic style from

one image and apply it to a totally different image, imagine a process where an artist

could carefully create an Artifact-Based visualization of one dataset, and then that style

could be lifted and applied as a starting point on a new dataset.

2D Design Interface

When we initially published Artifact-Based Rendering in 2019 [Johnson et al. 2019b],

visualizations were designed through the Unity editor. This was never seen as ideal, as

it required visualization designers to be familiar with Unity’s workflow and opened up

high potential for application-breaking user error. In 2020, our team began work on

developing a browser-based design interface modeled specifically with artists in mind.

The interface can even be accessed by remote participants, which pairs extremely well

with Remote Rendering. Vis Assets can be drag-and-dropped from the online library,

and connected to data variables and structural “key data” objects via interactive layer

widgets. And states and screenshots can be saved and shared with other users. Even in

its early iterations, it has provided a remarkable improvement in artist experience, and

is currently undergoing initial tests with new artists.

For the immediate future, continued refinement will improve the browser-based de-

sign interface, but discussion is already happening for how best to integrate the design

170

workflow into an immersive design experience either in VR or in an augmented-reality

work space.

Immersive 3D Exploration Interface

Artifact-Based visualizations are designed to be experienced immersively. The shapes,

textures, and colors drawn from the natural, physical world best facilitate human con-

nection when a participant shares their space. Thus, an important set of questions

revolve around what tasks that space should support and how the participant might

interact with the space.

Some spatial interactions we are discussing are primarily focused on the composition

and presentation of visualizations. We are experimenting with virtual lighting manipu-

lation, and setting virtual viewpoints for capturing images and videos for publication.

In the same way that we want to leverage artists’ skills of painting, sculpting, and col-

oring through physical means, we also want to lower the barriers for visual designers to

use their understanding of composition and lighting in as fluid and natural a manner

as possible. Thus, we see VR as a prime platforms for making these sorts of design

decisions.

VR also provides an excellent context for exploring data. We have begun work on

incorporating a number of successful data interaction techniques. We’ve made initial

strides towards implementing a virtual-reality version of Drawing with the Flow [Schroeder

et al. 2010] in 3D, where a user can explore volumetric vector fields by sketching example

illustrative streamlines, and refining them to accurately portray the underlying data.

Methods like Interactive Slice World-In-Miniature [Coffey et al. 2012b] will be adapted

to gain new perspectives on Artifact-Based visualizations. And ensemble visualization

techniques like Bento Box [Johnson et al. 2019a] or Worlds-in-Wedges [Nam et al. 2019]

are a natural framework into which ABR visualizations can be integrated.

Auto-Generated Legends

A critical feature for any truly useful scientific visualization is a meaningful legend.

Systems like Paraview automatically display colormap legends showing how the color

maps to the associated data variable (example in Figure 6.5). However, legends have

been an ongoing challenge for ABR.

171

The challenge comes from the numerous possible encodings that can all be co-located

on the same glyph, surface, or ribbon. Perhaps the most complex encoding in this paper

are the brain glyphs seen in Figure 6.3. Note that in addition to being oriented based

on brain fiber direction, the red-orange glyphs have data-driven aspect-ratio, color, and

texture coming from three different variables. And in contrast, the blue glyphs have

a double-encoding of color and aspect ratio for the same variable. A legend such as

that in Figure 6.3(b) is useful, but also ultimately problematic in that any example

glyphs used for one variable encoding, such as color, will inevitably also display possible

representations for other encodings such as aspect ratio or texture. One could imagine

a 3D grid of glyph examples, each of which demonstrating some combination of the

three selected variables and their encodings. Perhaps in virtual reality such a multi-

dimensional legend would be possible, but great care would need to be taken to ensure

legibility.

In the meantime, a current investigation is being made into building automated

2D legends from any ABR visualization state. Claire Weissman, a fellow researcher

in the Sculpting-Visualizations team, has recently prototyped what an automatically-

generated legend might look like (Figure 8.1). She approaches the problem of these

multi-variable encodings by using one encoding such as color to give a high-level visual

description of the visualization, and supports drilling-down into the glyphs or textures

used for each of these features.

Figure 8.1: A prototype for what an automatically-generated legend could look like,
with hierarchical drill-downs for seeing more detailed multi-variable encodings.

172

Measuring Affect

Another ongoing area of research for our team is quantifying the impact of the aes-

thetic of visualizations, and in particular how ABR affects the viewer, whether they are

scientists or the public at large. Annie Bares, another researcher on our Sculpting Visu-

alizations team, has recently published one work in how the approach of Close Reading

can be used to understand how laypeople respond to visualization designs [Bares et al.

2020]. Work is currently being done in applying a similar approach for understanding

affect for scientists.

8.1.2 Data Streaming & Remote Rendering

In Chapter 7, we provided detail on a number of next-steps for the Remote Rendering

work. While our current implementation provides utility for accessing ABR visualiza-

tions on the Quest or Magic Leap and sharing visualizations between collaborators,

Section 7.6.2 provides a road-map for several next-steps in improving the fidelity and

reliability of the Remote Rendering experience.

Another related area our team has been moving towards is advancing our research

into the Data Streaming process. Currently, our implementation pushes Paraview

changes to an ABR application, but we currently don’t provide and on-demand ac-

cess to data. We plan to design a data server infrastructure that can host a number of

different datasets, and from which specific variables and data objects can be requested

based on needs of the visualization designer. A system like this will both equip artists to

more fluidly apply their designs to different datasets, and enable more context-specific

selection of data subsets to be transmitted, reducing the delay required to update a

visualization. Such a server could even automatically apply sampling algorithms such

as Metropolis-Hastings or similar density-based filters.

8.2 Summary and Review of Primary Contributions

In the introduction of this dissertation, we listed 4 overarching contributions. We review

them here.

Several example works demonstrating the pillars of Palpable Visualizations.

173

With Bento Box in Chapter 3, we saw a number of ways in which accessibility and

discernibility – our pillars of palpability – were showcased, as well as several areas

where palpability could be improved. Motivated by our interactions with an artist dur-

ing Bento Box, we stepped back and considered two art-based projects in Chapter 4,

Weather Report and Lift-Off. We saw a number of new ways palpability was demon-

strated through these creative processes, and we used the results to inform our theory

of Artifact-Based Rendering in Chapter 5.

A theory and implementation of Artifact-Based Rendering, a framework of

techniques for enabling artists to create Palpable Visualizations. In Chapter 5,

we described the Artifact-Based rendering as a new means for creating visualizations

with greater discernibility through artist-curated variety, providing those artists with a

more accessible workflow for producing visualizations, and establishing a greater human

connection between the data and a participant.

Early results of applying Artifact-Based Rendering to several diverse 3D

datasets. In Chapter 6, we applied Artifact-Based Rendering to several datasets.

With the bio-geochemistry in the Gulf of Mexico in particular, we performed an internal

study in which we had an artist spend a day with a tool like Paraview, and compared

the results with a day spent using ABR. Afterwards, the scientist responsible for the

data provided feedback, remarking on the more engaging and detailed imagery he was

excited to discover through the ABR approach.

An implementation and characterization of remote rendering from a high-

performance rendering computer to a consumer untethered VR display with

initial parallax correction techniques. Finally, in Chapter 7 we presented motiva-

tion and implementation details of our solution to the problem of remote collaboration

via affordable, untethered VR displays, and wireless augmented reality devices. We

provided an overview of the metrics that can be used to characterize the performance

of remote rendering, and described our own internal demonstration of remote rendering

as a platform for a collaborative remote design discussion.

174

8.3 Vision of the Future

The work in this dissertation focuses closely on technical hurdles necessary to enable the

accessible and discernible experiences of palpable visualizations. In particular, we saw

how advanced rendering and computational techniques can be combined and extended

to produce visually rich and engaging data-driven imagery for a wide range of immersive

headsets.

At this juncture, it would be appropriate to look ahead at what might compose the

next dissertation-level research in Palpable Visualization. Now that the groundwork

has been laid for how ABR can produce accessible artist-designed data visualizations,

we need to consider both how to disseminate both these workflows as well as the re-

sulting experiences. This could involve designing physical visualization-design benches

that tightly link the scanning technology with AR displays of visualizations as they

provide immediate feedback for the designer while they iteratively refine their artifacts

by hand. For wide audiences, approaches to sharing these artifact-based results could

be multi-faceted museum experiences involving hybrids between 3D printed physicaliza-

tions, augmented reality and virtual reality stations, and even planetarium experiences.

By focusing on the accessibility of wide-scale dissemination for both visualization

creators and consumers, the next phase of Palpable Visualization could play a part in

a new renaissance of engagement with art and science.

8.4 General Conclusions

As we conclude, let us re-visit our thesis statement:

Interactive computational workflows that equip artists to fluidly design scientific vi-

sualizations and enable any participant to immersively experience and relate with the

results can lead to visualizations that are simultaneously more discernible and more ac-

cessible.

This research explores how the human connection to science can be enhanced through

leveraging the familiarity and variation of the physical world. By inviting artists into

our workflows, our data, and our software through fluid design interfaces, we begin to

tap into not just a new aesthetic for our visualizations, but an entirely new paradigm

of visual communication with an emphasis on relating physically with science.

175

Bento Box showed us that reaching out with our hands provides a natural and fluid

method of interacting with and understanding an actively studied ensemble of ten engi-

neering simulations, a massive challenge for rendering algorithms. But it also revealed

that our software design precluded the involvement of artists in our visualization design

process. This provides evidence that involving artists in the design of high-end scientific

visualization is useful; however, it also demonstrates that current visualization practices

limit their involvement.

In contrast, Weather Report turned to professional artists and architects to design

and construct a physical, touchable representation of weather data and the result was

far more approachable, reaching hundreds of participants from the public. This provides

evidence that artists can help us engage the public with science; however, the presen-

tation prioritized accessibility over discernibility. This type of public artwork does not

fully solve the problem of making high-end scientific visualization both more discernible

and accessible. As a next step in bringing artistic and creative tools into the scientific

domain, Lift-Off showed how we can begin to model our scientific procedures on the

physical creative processes that we all have learned, like napkin sketching and gestures

in the air. This provides evidence that traditional design methods like sketching have

a role to play in science; however, the applications here did not focus on multi-variable

visualization problems.

Bringing together these lessons in palpable discernment and accessibility, Artifact-

Based Rendering provides a fluid visualization design process and the display of data

through physical artifacts. And we see success as we recall the feedback from our

artists and scientists. Our artists praised the ABR design workflow as giving her access

to as wide an array of design possibilities as her physical art studio, and one of our

scientists was nearly taken aback at how approachable and engaging the aesthetic was.

And most importantly, we’ve balanced this accessibility with discernibility. Thanks to

the extra channels of information we can encode with shape and texture in our ABR

VisLayers, that scientist found these visualizations to be transformational, letting him

discern combinations of variables he couldn’t otherwise.

And with our Remote Rendering techniques, we can share ABR visualizations driven

by huge super-computed datasets with remote audiences using a wide range of immersive

devices to allow scientists and the public to immersively experience data.

176

As we look to the future, we see an explosion of rich, interdisciplinary collaborations,

breaking down the technical and psychological divides between art and science. We see

Artifact-Based Rendering as one large step towards bringing scientific data into the

artist’s palette, perceptually accurate visual design philosophies into the scientist’s tool

belt, and a deeper understanding of complex scientific research to the fingertips of

everyone.

References

Maneesh Agrawala and Chris Stolte. 2001. Rendering Effective Route Maps: Improving

Usability Through Generalization. In Proceedings of the 28th annual conference on

Computer Graphics and Interactive Techniques. ACM, 241–249.

James Ahrens, Berk Geveci, and Charles Law. 2005. Paraview: An end-user tool for

large data visualization. The visualization handbook 717 (2005).

Oluwafemi S Alabi, Xunlei Wu, Jonathan M Harter, Madhura Phadke, Lifford Pinto,

Hannah Petersen, Steffen Bass, Michael Keifer, Sharon Zhong, Chris Healey, et al.

2012. Comparative visualization of ensembles using ensemble surface slicing. In

IS&T/SPIE Electronic Imaging. International Society for Optics and Photonics,

82940U–82940U.

J. Albers. 2009. The Interaction of Color. Yale University Press, New Haven, CT.

Jason Alexander, Yvonne Jansen, Kasper Hornbæk, Johan Kildal, and Abhijit Karnik.

2015. Exploring the challenges of making data physical. In Proceedings of the 33rd An-

nual ACM Conference Extended Abstracts on Human Factors in Computing Systems.

ACM, 2417–2420.

Amazon. 2020. Amazon Wavelength. https://aws.amazon.com/wavelength/

Erol Aygar, Colin Ware, and David Rogers. 2018. The contribution of stereoscopic

and motion depth cues to the perception of structures in 3D point clouds. ACM

Transactions on Applied Perception (TAP) 15, 2 (2018), 1–13.

Annie Bares, Daniel F. Keefe, and Francesca Samsel. 2020. Close Reading for Visual-

ization Evaluation. 40, 04 (July 2020), 84–95.

177

https://aws.amazon.com/wavelength/

178

Štěpán Beneš and Jaroslav Kruis. 2015. Efficient methods to visualize finite element

meshes. Advances in Engineering Software 79 (2015), 81–90.

Dan S. Bloomberg. 2008. Color quantization using octrees.

Ralf P Botchen, Daniel Weiskopf, and Thomas Ertl. 2005. Texture-based visualization

of uncertainty in flow fields. In VIS 05. IEEE Visualization, 2005. IEEE, 647–654.

Doug Bowman, Ernst Kruijff, Joseph J LaViola Jr, and Ivan P Poupyrev. 2004. 3D

User interfaces: theory and practice, CourseSmart eTextbook. Addison-Wesley.

Doug A Bowman and Larry F Hodges. 1997. An evaluation of techniques for grabbing

and manipulating remote objects in immersive virtual environments. In Proceedings

of the 1997 symposium on Interactive 3D graphics. ACM, 35–ff.

Stefan Bruckner and Eduard Gröller. 2007. Enhancing depth-perception with flexible

volumetric halos. IEEE Transactions on Visualization and Computer Graphics 13, 6

(2007), 1344–1351.

Stefan Bruckner and M Eduard Groller. 2005. Volumeshop: An interactive system for

direct volume illustration. IEEE.

Stefan Bruckner and Torsten Moller. 2010. Result-driven exploration of simulation

parameter spaces for visual effects design. IEEE Transactions on Visualization and

Computer Graphics 16, 6 (2010), 1468–1476.

Steve Bryson. 1996. Virtual reality in scientific visualization. Commun. ACM 39, 5

(1996), 62–71.

R. Bujack, T. L. Turton, F. Samsel, C. Ware, D. H. Rogers, and J. Ahrens. 2018.

The Good, the Bad, and the Ugly: A Theoretical Framework for the Assessment of

Continuous Colormaps. IEEE Transactions on Visualization and Computer Graphics

24, 1 (Jan. 2018), 923–933. https://doi.org/10.1109/TVCG.2017.2743978

Jeff Butterworth, Andrew Davidson, Stephen Hench, and Marc. T. Olano. 1992. 3DM:

A Three Dimensional Modeler Using a Head-mounted Display. In Proceedings of the

1992 Symposium on Interactive 3D Graphics. ACM, New York, NY, USA, 135–138.

https://doi.org/10.1109/TVCG.2017.2743978

179

Bill Buxton. 2010. Sketching user experiences: getting the design right and the right

design. Morgan kaufmann.

John Carmack. 2013. Latency Mitigation Strategies. https://

web.archive.org/web/20140719085135/http://altdev.co/2013/02/22/

latency-mitigation-strategies/

John Carmack. 2019. Oculus Connect 6 - Day 2 Keynote. (2019). https://youtu.be/

PMIDaomx0GA Oculus Connect 6.

E. H. . Chi, P. Barry, J. Riedl, and J. Konstan. 1997. A spreadsheet approach

to information visualization. In Proceedings of VIZ ’97: Visualization Conference,

Information Visualization Symposium and Parallel Rendering Symposium. 17–24.

https://doi.org/10.1109/INFVIS.1997.636761

Siddhartha Chib and Edward Greenberg. 1995. Understanding the metropolis-hastings

algorithm. The american statistician 49, 4 (1995), 327–335.

Dane Coffey, Fedor Korsakov, Marcus Ewert, Haleh Hagh-Shenas, Lauren Thorson, A

Ellingson, D Nuckley, and Daniel F Keefe. 2012a. Visualizing motion data in virtual

reality: Understanding the roles of animation, interaction, and static presentation.

31, 3pt3 (2012), 1215–1224.

Dane Coffey, Chi-Lun Lin, Arthur G Erdman, and Daniel F Keefe. 2013. Design by

dragging: An interface for creative forward and inverse design with simulation en-

sembles. IEEE transactions on visualization and computer graphics 19, 12 (2013),

2783–2791.

Dane Coffey, Nicholas Malbraaten, Trung Le, Iman Borazjani, Fotis Sotiropoulos,

Arthur G. Erdman, and Daniel F. Keefe. 2012b. Interactive Slice WIM: Navigating

and Interrogating Volume Datasets Using a Multi-Surface, Multi-Touch VR Inter-

face. IEEE Transactions on Visualization and Computer Graphics 18, 10 (2012),

1614–1626. https://doi.org/10.1109/TVCG.2011.283

Dane Coffey, Nicholas Malbraaten, Trung Bao Le, Iman Borazjani, Fotis Sotiropoulos,

Arthur G Erdman, and Daniel F Keefe. 2012c. Interactive slice WIM: Navigating and

https://web.archive.org/web/20140719085135/http://altdev.co/2013/02/22/latency-mitigation-strategies/
https://web.archive.org/web/20140719085135/http://altdev.co/2013/02/22/latency-mitigation-strategies/
https://web.archive.org/web/20140719085135/http://altdev.co/2013/02/22/latency-mitigation-strategies/
https://youtu.be/PMIDaomx0GA
https://youtu.be/PMIDaomx0GA
https://doi.org/10.1109/INFVIS.1997.636761
https://doi.org/10.1109/TVCG.2011.283

180

interrogating volume data sets using a multisurface, multitouch VR interface. IEEE

Transactions on Visualization and Computer Graphics 18, 10 (2012), 1614–1626.

Donna J Cox. 1988. Using the Supercomputer to Visualize Higher Dimensions: An

Artist’s Contribution to Scientific Visualization. Leonardo 21, 3 (1988), 233–242.

Donna J Cox. 2006. Metaphoric mappings: The art of visualization. Aesthetic computing

(2006), 89–114.

Donna J Cox. 2008. Using the supercomputer to visualize higher dimensions: An artist’s

contribution to scientific visualization. Leonardo 41, 4 (2008), 391–400.

Lawrence D Cutler, Bernd Fröhlich, and Pat Hanrahan. 1997. Two-handed direct ma-

nipulation on the responsive workbench. In Proceedings of the 1997 symposium on

Interactive 3D graphics. ACM, 107–114.

Michael F. Deering. 1995. HoloSketch: A Virtual Reality Sketching/Animation Tool.

ACM Trans. on Computer-Human Interaction 2, 3 (1995), 220–238.

Hessam Djavaherpour, Ali Mahdavi-Amiri, and Faramarz F Samavati. 2017. Physical

visualization of geospatial datasets. IEEE computer graphics and applications 37, 3

(2017), 61–69.

Klaus Engel and Thomas Ertl. 1999. Texture-based volume visualization for multiple

users on the world wide web. In Virtual Environments’ 99. Springer, 115–124.

Klaus Engel, Roberto Grosso, and Thomas Ertl. 1998. Progressive isosurfaces on the

web. Late Breaking Hot Topics Proc. Visualization 98 (1998).

Klaus Engel, Ove Sommer, Christian Ernst, and Thomas Ertl. 1999. Remote 3d visual-

ization using image-streaming techniques. In ISIMADE-11 TH Internationl Confer-

ence on Systems Research, Informatics and Cybernetics.

P. Evans and N. Thomas. 2008. The Elements of Design. Cengage Learning, Clifton

Park, NY.

Martin Falk, Sebastian Grottel, Michael Krone, and Guido Reina. 2016. Interactive

GPU-based visualization of large dynamic particle data. Synthesis Lectures on Visu-

alization 4, 3 (2016), 1–121.

181

Hamza Farooq, Junqian Xu, Jung Who Nam, Daniel F Keefe, Essa Yacoub, Tryphon

Georgiou, and Christophe Lenglet. 2016a. Microstructure imaging of crossing (MIX)

white matter fibers from diffusion MRI. Scientific reports 6 (2016), 38927.

Hamza Farooq, Junqian Xu, Essa Yacoub, Tryphon Georgiou, and Christophe Lenglet.

2016b. Brain Tissue Micro-Structure Imaging from Diffusion MRI Using Least

Squares Variable Separation. In Computational Diffusion MRI. Springer, 55–64.

David Feng, Yueh Lee, Lester Kwock, and Russell M Taylor II. 2009. Evaluation of

Glyph-based Multivariate Scalar Volume Visualization Techniques. In Proceedings of

the 6th Symposium on Applied Perception in Graphics and Visualization. ACM, 61–

68.

Danyel Fisher, Igor Popov, Steven Drucker, et al. 2012. Trust me, I’m partially right:

incremental visualization lets analysts explore large datasets faster. In Proceedings of

the SIGCHI Conference on Human Factors in Computing Systems. ACM, 1673–1682.

Jerrold A Friesen and Thomas D Tarman. 2000. Remote high-performance visualization

and collaboration. IEEE Computer Graphics and Applications 20, 4 (2000), 45–49.

Johannes Fuchs, Petra Isenberg, Anastasia Bezerianos, and Daniel Keim. 2017. A Sys-

tematic Review of Experimental Studies on Data Glyphs. IEEE Transactions on

Visualization and Computer Graphics 23, 7 (2017), 1863–1879.

Andrew Gardner, Chris Tchou, Tim Hawkins, and Paul Debevec. 2003. Linear light

source reflectometry. ACM Transactions on Graphics 22, 3 (2003), 749–758.

Christoph Garth and Kenneth I Joy. 2010. Fast, memory-efficient cell location in un-

structured grids for visualization. IEEE Transactions on Visualization and Computer

Graphics 16, 6 (2010), 1541–1550.

Michael Gleicher. 2017. Considerations for Visualizing Comparison. IEEE transactions

on visualization and computer graphics (Aug. 2017).

Michael Gleicher, Danielle Albers, Rick Walker, Ilir Jusufi, Charles D Hansen, and

Jonathan C Roberts. 2011. Visual comparison for information visualization. Infor-

mation Visualization 10, 4 (2011), 289–309.

182

Michael Glueck, Azam Khan, and Daniel J Wigdor. 2014. Dive in!: Enabling progressive

loading for real-time navigation of data visualizations. In Proceedings of the SIGCHI

Conference on Human Factors in Computing Systems. ACM, 561–570.

Amy Gooch, Bruce Gooch, Peter Shirley, and Elaine Cohen. 1998. A Non-photorealistic

Lighting Model for Automatic Technical Illustration. In Proceedings of the 25th An-

nual Conference on Computer Graphics and Interactive Techniques. ACM, 447–452.

Gabriele Gorla, Victoria Interrante, and Guillermo Sapiro. 2003. Texture synthesis

for 3D shape representation. IEEE Transactions on Visualization and Computer

Graphics 9, 4 (2003), 512–524.

Hanqi Guo, Ningyu Mao, and Xiaoru Yuan. 2011. Wysiwyg (what you see is what

you get) volume visualization. IEEE Transactions on Visualization and Computer

Graphics 17, 12 (2011), 2106–2114.

Christopher G Healey. 2001. Formalizing artistic techniques and scientific visualization

for painted renditions of complex information spaces. In IJCAI. 371–376.

Christopher G Healey and James T Enns. 1999. Large datasets at a glance: Combining

textures and colors in scientific visualization. IEEE transactions on visualization and

computer graphics 5, 2 (1999), 145–167.

Christopher G Healey and James T Enns. 2002. Perception and Painting: A Search for

Effective, Engaging Visualizations. IEEE Computer Graphics and Applications 22, 2

(2002), 10–15.

Paul Heckbert. 1982. Color image quantization for frame buffer display. ACM SIG-

GRAPH 16, 3 (1982), 297–307.

Paul S Heckbert. 1986. Survey of texture mapping. IEEE computer graphics and

applications 6, 11 (1986), 56–67.

Bernd Hentschel, Irene Tedjo, Markus Probst, Marc Wolter, Marek Behr, Christian

Bischof, and Torsten Kuhlen. 2008. Interactive blood damage analysis for ventricular

assist devices. IEEE Transactions on Visualization and Computer Graphics 14, 6

(2008), 1515–1522.

183

Aaron Hertzmann, Charles E Jacobs, Nuria Oliver, Brian Curless, and David H Salesin.

2001. Image analogies. In Proceedings of the 28th annual conference on Computer

graphics and interactive techniques. 327–340.

Ken Hinckley, Randy Pausch, Dennis Proffitt, James Patten, and Neal Kassell. 1997.

Cooperative bimanual action. In Proceedings of the ACM SIGCHI Conference on

Human factors in computing systems. ACM, 27–34.

Trevor Hogan and Eva Hornecker. 2016. Towards a design space for multisensory data

representation. Interacting with Computers 29, 2 (2016), 147–167.

V. Interrante. 2000. Harnessing natural textures for multivariate visualization. IEEE

Computer Graphics and Applications 20, 6 (Nov. 2000), 6–11. https://doi.org/

10.1109/MCG.2000.888001

V. Interrante and C. Grosch. 1997. Strategies for effectively visualizing 3D flow with

volume LIC. In Proceedings of the 8th conference on Visualization. IEEE Computer

Society Press, 421–424. https://doi.org/10.1109/VISUAL.1997.663912

J. Itten and F. Birren. 1970. The Elements of Color: A Treatise on the Color System of

Johannes Itten Based on His Book the Art of Color (1st ed.). Van Nostrand Reinhold

Company, New York, NY.

Harry W. Bullen IV, Jessica S. Chang, Alexander V. Harn, Sean P. Kelly, Steven G.

Satterfield, Peter M. Ketcham, and Judith E. Devaney. 2002. A Glyph Toolbox for

Immersive Scientific Visualization.

Bret Jackson. 2017. MinVR. https://github.com/MinVR/MinVR

Bret Jackson and Daniel F. Keefe. 2016. Lift-Off: Using Reference Imagery and Free-

hand Sketching to Create 3D Models in VR. IEEE Transactions on Visualization and

Computer Graphics 22, 4 (April 2016), 1442–1451.

TJ Jankun-Kelly and Kwan-Liu Ma. 2001. Visualization exploration and encapsulation

via a spreadsheet-like interface. IEEE Transactions on Visualization and Computer

Graphics 7, 3 (2001), 275–287.

https://doi.org/10.1109/MCG.2000.888001
https://doi.org/10.1109/MCG.2000.888001
https://doi.org/10.1109/VISUAL.1997.663912
https://github.com/MinVR/MinVR

184

Yvonne Jansen, Pierre Dragicevic, Petra Isenberg, Jason Alexander, Abhijit Karnik,

Johan Kildal, Sriram Subramanian, and Kasper Hornbæk. 2015. Opportunities and

challenges for data physicalization. In Proceedings of the 33rd Annual ACM Confer-

ence on Human Factors in Computing Systems. ACM, 3227–3236.

Waqas Javed and Niklas Elmqvist. 2010. Stack zooming for multi-focus interaction in

time-series data visualization. In Visualization Symposium (PacificVis), 2010 IEEE

Pacific. IEEE, 33–40.

Waqas Javed, Sohaib Ghani, and Niklas Elmqvist. 2012. Polyzoom: multiscale and

multifocus exploration in 2d visual spaces. In Proceedings of the SIGCHI Conference

on Human Factors in Computing Systems. ACM, 287–296.

C. Johnson. 2004. Top scientific visualization research problems. IEEE Computer

Graphics and Applications 24, 4 (July 2004), 13–17. https://doi.org/10.1109/

MCG.2004.20

Seth Johnson, Bret Jackson, Bethany Tourek, Marcos Molina, Arthur G Erdman, and

Daniel F Keefe. 2016. Immersive analytics for medicine: hybrid 2D/3D sketch-based

interfaces for annotating medical data and designing medical devices. In Proceedings

of the 2016 ACM Companion on Interactive Surfaces and Spaces. 107–113.

Seth Johnson, Daniel Orban, Hakizumwami Birali Runesha, Lingyu Meng, Bethany

Juhnke, Arthur Erdman, Francesca Samsel, and Daniel F Keefe. 2019a. Bento Box:

An Interactive and Zoomable Small Multiples Technique for Visualizing 4D Simula-

tion Ensembles in Virtual Reality. Front. Robot. AI 6: 61. doi: 10.3389/frobt (2019).

Seth Johnson, Francesca Samsel, Gregory Abram, Daniel Olson, Andrew J Solis, Bridger

Herman, Phillip J Wolfram, Christophe Lenglet, and Daniel F Keefe. 2019b. Artifact-

Based Rendering: Harnessing Natural and Traditional Visual Media for More Ex-

pressive and Engaging 3D Visualizations. IEEE transactions on visualization and

computer graphics 26, 1 (2019), 492–502.

Alark Joshi and Penny Rheingans. 2005. Illustration-inspired techniques for visualizing

time-varying data. In Visualization, 2005. VIS 05. IEEE. IEEE, 679–686.

https://doi.org/10.1109/MCG.2004.20
https://doi.org/10.1109/MCG.2004.20

185

Ralf Kähler, Donna Cox, Robert Patterson, Stuart Levy, Hans Christian Hege, and Tom

Abel. 2002. Rendering the First Star in the Universe: A Case Study. In Proceedings

of IEEE Visualization. IEEE, 537–540.

Robert D Kalnins, Lee Markosian, Barbara J Meier, Michael A Kowalski, Joseph C

Lee, Philip L Davidson, Matthew Webb, John F Hughes, and Adam Finkelstein.

2002. WYSIWYG NPR: Drawing strokes directly on 3D models. ACM Transactions

on Graphics (TOG) 21, 3 (2002), 755–762.

Daniel F Keefe, Daniel Acevedo, Jadrian Miles, Fritz Drury, Sharon M Swartz, and

David H Laidlaw. 2008. Scientific Sketching for Collaborative VR Visualization De-

sign. IEEE Transactions on Visualization and Computer Graphics 14, 4 (2008),

835–847.

Daniel F Keefe, Daniel Acevedo Feliz, Tomer Moscovich, David H Laidlaw, and Joseph J

LaViola Jr. 2001. CavePainting: a fully immersive 3D artistic medium and interactive

experience. In Proceedings of the 2001 symposium on Interactive 3D graphics. ACM,

85–93.

Daniel F Keefe, Seth Johnson, Ross Altheimer, Deuk-Geun Hong, Robert Hunter, An-

drea J Johnson, Maura Rockcastle, Mark Swackhamer, and Aaron Wittkamper. 2018.

Weather Report: A Site-Specific Artwork Interweaving Human Experiences and Sci-

entific Data Physicalization. IEEE Computer Graphics and Applications 38, 4 (2018),

10–16.

Daniel F Keefe, David B Karelitz, Eileen L Vote, and David H Laidlaw. 2005. Artistic

collaboration in designing VR visualizations. IEEE Computer Graphics and Applica-

tions 25, 2 (2005), 18–23.

Daniel F Keefe, Robert C Zeleznik, and David H Laidlaw. 2007. Drawing on air: Input

techniques for controlled 3D line illustration. IEEE Transactions on Visualization

and Computer Graphics 13, 5 (2007), 1067–1081.

Johannes Kehrer and Helwig Hauser. 2013. Visualization and visual analysis of multi-

faceted scientific data: A survey. IEEE transactions on visualization and computer

graphics 19, 3 (2013), 495–513.

186

Rohit Ashok Khot, Larissa Hjorth, and Florian ‘Floyd’ Mueller. 2014. Understanding

physical activity through 3D printed material artifacts. In Proceedings of the SIGCHI

Conference on Human Factors in Computing Systems. ACM, 3835–3844.

Kyungyoon Kim, John V. Carlis, and Daniel F. Keefe. 2017. Comparison techniques

utilized in spatial 3D and 4D data visualizations: A survey and future directions. 67,

Supplement C (2017), 138–147.

Gordon Kindlmann. 2004. Superquadric Tensor Glyphs. In Proceedings of the Sixth

Joint Eurographics-IEEE TCVG conference on Visualization. Eurographics Associa-

tion, 147–154.

Robert M Kirby, Daniel F Keefe, and David H Laidlaw. 2005. Painting and Visualiza-

tion. The Visualization Handbook (2005), 873–891.

Robert M Kirby, Haralambos Marmanis, and David H Laidlaw. 1999. Visualizing multi-

valued data from 2D incompressible flows using concepts from painting. In Proceedings

of the conference on Visualization’99: celebrating ten years. IEEE Computer Society

Press, 333–340.

Roberta L Klatzky and Joann Peck. 2012. Please touch: Object properties that invite

touch. IEEE Transactions on Haptics 5, 2 (2012), 139–147.

P. Kovesi. 2014. Good Colour Maps: How to Design Them. arXiv

preprint arXiv:1509.03700. http://peterkovesi.com/projects/colourmaps/

ColourmapTheory/

Falko Kuester, Ralph Bruckschen, Bernd Hamann, and Kenneth I. Joy. 2001. Visual-

ization of particle traces in virtual environments. In VRST.

Bireswar Laha and Doug A Bowman. 2013. Volume cracker: a bimanual 3D interaction

technique for analysis of raw volumetric data. In Proceedings of the 1st symposium

on Spatial user interaction. ACM, 61–68.

Zeqi Lai, Y Charlie Hu, Yong Cui, Linhui Sun, Ningwei Dai, and Hung-Sheng Lee. 2019.

Furion: Engineering high-quality immersive virtual reality on today’s mobile devices.

IEEE Transactions on Mobile Computing (2019).

http://peterkovesi.com/projects/colourmaps/ColourmapTheory/
http://peterkovesi.com/projects/colourmaps/ColourmapTheory/

187

David H Laidlaw, Eric T Ahrens, David Kremers, Matthew J Avalos, Russell E Jacobs,

and Carol Readhead. 1998. Visualizing diffusion tensor images of the mouse spinal

cord. In Proceedings Visualization’98 (Cat. No. 98CB36276). IEEE, 127–134.

D. Lauer and S. Pentar. 2012. Design Basics. Wadsworth, Boston, MA.

Joseph J LaViola Jr. 2000. A discussion of cybersickness in virtual environments. ACM

Sigchi Bulletin 32, 1 (2000), 47–56.

Bongshin Lee, Rubaiat Habib Kazi, and Greg Smith. 2013. SketchStory: Telling more

engaging stories with data through freeform sketching. IEEE Transactions on Visu-

alization and Computer Graphics 19, 12 (2013), 2416–2425.

Eun-Jin Lee and Sherif El-Tawil. 2008. FEMvrml: An interactive virtual environment

for visualization of finite element simulation results. Advances in Engineering Software

39, 9 (2008), 737–742.

Andrea Leganchuk, Shumin Zhai, and William Buxton. 1998. Manual and cognitive ben-

efits of two-handed input: an experimental study. ACM Transactions on Computer-

Human Interaction (TOCHI) 5, 4 (1998), 326–359.

P. A. Legg, E. Maguire, S. Walton, and M. Chen. 2017. Glyph Visualization: A Fail-

Safe Design Scheme Based on Quasi-Hamming Distances. IEEE Transactions on

Computer Graphics and Applications 37, 2 (2017), 31–41.

Xu Liangyin, Li Yunpeng, Zhang Sheng, and Chen Biaosong. 2018. Efficient visual-

ization strategies for large-scale finite element models. Journal of Computing and

Information Science in Engineering 18, 1 (2018), 011007.

Santiago V. Lombeyda. 2016. Distinct 3D Glyphs with Data Layering for Highly Dense

Multivariate Data Plots. arXiv Preprint (2016).

Xin Lu, Poonam Suryanarayan, Reginald B Adams Jr., Jia Li, Michelle G Newman, and

James Z Wang. 2012. On shape and the computability of emotions. In Proceedings of

the 20th ACM international conference on Multimedia. ACM, 229.

188

Jonas Lukasczyk, Eric Kinner, James Ahrens, Heike Leitte, and Christoph Garth. 2018.

Voidga: A view-approximation oriented image database generation approach. In 2018

IEEE 8th Symposium on Large Data Analysis and Visualization (LDAV). 12–22.

Eric Jason Luke and Charles D Hansen. 2002. Semotus visum: a flexible remote visual-

ization framework. IEEE.

Giorgia Lupi. 2017. Data Humanism: The Revolutionary Future of Data Visualization.

Print Magazine (Jan. 2017).

Giorgia Lupi, Stefanie Posavec, and Maria Popova. 2016. Dear data. Princeton Archi-

tectural Press.

Kwan-Liu Ma, Aaron Hertzmann, Victoria Interrante, and Eric B Lum. 2002. Recent

advances in non-photorealistic rendering for art and visualization. SIGGRAPH 2002

Course Notes. Course 23 (2002).

Daniel P Mapes and J Michael Moshell. 1995. A two-handed interface for object ma-

nipulation in virtual environments. Presence: Teleoperators & Virtual Environments

4, 4 (1995), 403–416.

Peter Mitchell, Colin Ware, and John Kelley. 2009. Investigating flow visualizations

using interactive design space hill climbing. In Systems, Man and Cybernetics, 2009.

SMC 2009. IEEE International Conference on. IEEE, 355–361.

J Keith Moore, Scott C Doney, Joanie A Kleypas, David M Glover, and Inez Y Fung.

2001. An intermediate complexity marine ecosystem model for the global domain.

Deep Sea Research Part II: Topical Studies in Oceanography 49, 1-3 (2001), 403–462.

J Keith Moore, Keith Lindsay, Scott C Doney, Matthew C Long, and Kazuhiro Misumi.

2013. Marine ecosystem dynamics and biogeochemical cycling in the Community

Earth System Model [CESM1 (BGC)]: Comparison of the 1990s with the 2090s under

the RCP4. 5 and RCP8. 5 scenarios. Journal of Climate 26, 23 (2013), 9291–9312.

K. Moreland. 2009. Diverging Color Maps for Scientific Visualization. In Proceedings of

the 5th International Symposium on Advances in Visual Computing, Part II (ISVC

’09). 92–103.

189

Tamara Munzner. 2014. Visualization analysis and design. CRC Press.

Oleg Muratov, Yury Slynko, Vitaly Chernov, Maria Lyubimtseva, Artem Shamsuarov,

and Victor Bucha. 2016. 3DCapture: 3D Reconstruction for a Smartphone. In Pro-

ceedings of the IEEE Conference on Computer Vision and Pattern Recognition Work-

shops. 75–82.

Jung Who Nam, Krista McCullough, Joshua Tveite, Maria Molina Espinosa, Charles H

Perry, Barry T Wilson, and Daniel F Keefe. 2019. Worlds-in-Wedges: Combining

Worlds-in-Miniature and Portals to Support Comparative Immersive Visualization of

Forestry Data. In 2019 IEEE Conference on Virtual Reality and 3D User Interfaces

(VR). IEEE, 747–755.

Engineering National Academies of Sciences, David Skorton Medicine, and Ashley Bear

editors. 2018. The Integration of the Humanities and Arts with Sciences, Engineering,

and Medicine in Higher Education: Branches from the Same Tree. The National

Academies Press, Washington, DC. https://doi.org/10.17226/24988

NorthernLights.mn. 2016. Northern Spark Call for Proposals: Climate

Chaos — Climate Rising. http://www.mnartists.org/content/

northern-spark-call-proposals-climate-chaos-climate-rising

Wieslaw L Nowinski, Anthony Fang, Bonnie T Nguyen, Jose K Raphel, Lakshmipathy

Jagannathan, Raghu Raghavan, R Nick Bryan, and Gerald A Miller. 1997. Multiple

brain atlas database and atlas-based neuroimaging system. Computer Aided Surgery

2, 1 (1997), 42–66.

Nvidia. 2020. NVIDIA CloudXR™ SDK. https://developer.nvidia.com/

nvidia-cloudxr-sdk

Harald Obermaier and Kenneth I Joy. 2014. Future challenges for ensemble visualization.

IEEE Computer Graphics and Applications 34, 3 (2014), 8–11.

Oculus. [n.d.]. Testing and Performance Analysis. https://developer.oculus.com/

documentation/unity/unity-perf

https://doi.org/10.17226/24988
http://www.mnartists.org/content/northern-spark-call-proposals-climate-chaos-climate-rising
http://www.mnartists.org/content/northern-spark-call-proposals-climate-chaos-climate-rising
https://developer.nvidia.com/nvidia-cloudxr-sdk
https://developer.nvidia.com/nvidia-cloudxr-sdk
https://developer.oculus.com/documentation/unity/unity-perf
https://developer.oculus.com/documentation/unity/unity-perf

190

Manuel M Oliveira, Gary Bishop, and David McAllister. 2000. Relief texture mapping.

In Proceedings of the 27th annual conference on Computer graphics and interactive

techniques. 359–368.

J Logan Olson, David M Krum, Evan A Suma, and Mark Bolas. 2011. A design for a

smartphone-based head mounted display. In 2011 IEEE Virtual Reality Conference.

IEEE, 233–234.

John M. Patchett, Francesca Samsel, Karen C. Tsai, Galen R. Gisler, David Rogers,

Greg Abram, and Terece L. Turton. 2016. Visualization and Analysis of Threats from

Asteroid Ocean Impacts. In Proceedings of the 2016 ACM/IEEE International Con-

ference for High Performance Computing, Networking, Storage, and Analysis (SC).

IEEE. Winner, Best Scientific Visualization & Data Analytics Showcase.

Mark R Petersen, Douglas W Jacobsen, Todd D Ringler, Matthew W Hecht, and

Mathew E Maltrud. 2015. Evaluation of the arbitrary Lagrangian–Eulerian vertical

coordinate method in the MPAS-Ocean model. Ocean Modelling 86 (2015), 93–113.

Polygraphene. 2019. ALVR - Air Light VR. https://github.com/polygraphene/

ALVR.

Feng Qian, Bo Han, Qingyang Xiao, and Vijay Gopalakrishnan. 2018. Flare: Practical

viewport-adaptive 360-degree video streaming for mobile devices. In Proceedings of the

24th Annual International Conference on Mobile Computing and Networking. ACM,

99–114.

Qualcomm. 2020. Qualcomm Collaborates with 15 Global Operators to De-

liver XR Viewers. http://www.qualcomm.com/news/releases/2020/05/26/

qualcomm-collaborates-15-global-operators-deliver-xr-viewers

Mohammad Raji, Alok Hota, Tanner Hobson, and Jian Huang. 2018. Scientific Visual-

ization as a Microservice. IEEE transactions on visualization and computer graphics

(2018).

Mohammad Raji, Alok Hota, and Jian Huang. 2017. Scalable web-embedded volume

rendering. In 2017 IEEE 7th Symposium on Large Data Analysis and Visualization

(LDAV). IEEE, 45–54.

https://github.com/polygraphene/ALVR
https://github.com/polygraphene/ALVR
http://www.qualcomm.com/news/releases/2020/05/26/qualcomm-collaborates-15-global-operators-deliver-xr-viewers
http://www.qualcomm.com/news/releases/2020/05/26/qualcomm-collaborates-15-global-operators-deliver-xr-viewers

191

Lisa Rebenitsch and Charles Owen. 2016. Review on cybersickness in applications and

visual displays. Virtual Reality 20, 2 (2016), 101–125.

Penny L Rheingans. 2000. Task-based color scale design. In Proceedings of the 28th AIPR

Workshop: 3D Visualization for Data Exploration and Decision Making, Vol. 3905.

International Society for Optics and Photonics, 35–44.

Theresa Marie Rhyne. 2016. Applying Color Theory to Digital Media and Visualization.

CRC Press.

Todd Ringler, Mark Petersen, Robert L Higdon, Doug Jacobsen, Philip W Jones, and

Mathew Maltrud. 2013. A multi-resolution approach to global ocean modeling. Ocean

Modelling 69 (2013), 211–232.

George Robertson, Roland Fernandez, Danyel Fisher, Bongshin Lee, and John Stasko.

2008. Effectiveness of animation in trend visualization. IEEE Transactions on Visu-

alization and Computer Graphics 14, 6 (2008).

David H. Rogers, Francesca Samsel, Daniel F. Keefe, Benjamin Bach, and Lyn Bartram.

2017. Discovery Jam. In IEEE VIS, Accepted Workshop.

David H. Rogers, Francesca Samsel, Daniel F. Keefe, Mariah Meyer, Cecilia Aragon,

Nina McCurdy, and Ethan Kerzner. 2016. Discovery Jam. In IEEE VIS, Accepted

Workshop.

B. E. Rogowitz and A. D. Kalvin. 2001. The “Which Blair Project”: A Quick Visual

Method for Evaluating Perceptual Color Maps. In Proceedings Visualization 2001

(VIS’01). 183ff.

Timo Ropinski, Steffen Oeltze, and Bernhard Preim. 2011. Survey of glyph-based vi-

sualization techniques for spatial multivariate medical data. Computers & Graphics

35, 2 (2011), 392–401.

Hakizumwami Birali Runesha, Bogdan Florin Tanasoiu, Georgi Subashki, Arthur Erd-

man, and Daniel Keefe. 2016. Podium Presentation: Fluid-Structure Interaction

Simulation of Cardiac Leads in the Heart: Developing a Computational Model for

use in Medical Device Design. Design of Medical Devices Conference.

192

Francesca Samsel. 2013. Art-Science-Visualization Collaborations: Examining the Spec-

trum. In Proceedings of the IEEE VIS Arts Program (VISAP). IEEE.

Francesca Samsel, Lyn Bartram, Annie, and Bares. 2018. Art, Affect and Color: Cre-

ating Engaging Expressive Scientific Visualization. In Proceedings of IEEE Visualiza-

tion.

Francesca Samsel and Daniel F. Keefe. 2013. Meet the Scientists. In College Art Asso-

ciation Annual Meeting.

Francesca Samsel, Sebastian Klaassen, Mark Petersen, Terece L Turton, Gregory

Abram, David H Rogers, and James Ahrens. 2016. Interactive Colormapping: En-

abling Multiple Data Range and Detailed Views of Ocean Salinity. In Proceedings

of the 2016 CHI Conference Extended Abstracts on Human Factors in Computing

Systems. ACM, 700–709.

F. Samsel, M. Petersen, T. Turton, G. Abram, J. Wendelberger, and J. Ahrens.

2015. Colormaps That Improve Perception of High-Resolution Ocean Data. In

Proceedings of the 33rd Annual ACM Conference Extended Abstracts on Human

Factors in Computing Systems (CHI EA ’15). Seoul, Republic of Korea, 703–710.

https://doi.org/10.1145/2702613.2702975

Purvi Saraiya, Chris North, and Karen Duca. 2005. An insight-based methodology

for evaluating bioinformatics visualizations. IEEE transactions on visualization and

computer graphics 11, 4 (2005), 443–456.

Richard M Satava. 1993. Virtual reality surgical simulator. Surgical endoscopy 7, 3

(1993), 203–205.

Gernot Schaufler and Wolfgang Stürzlinger. 1996. A three dimensional image cache for

virtual reality. In Computer Graphics Forum, Vol. 15. Wiley Online Library, 227–235.

Ben Schneiderman. 2007. Creativity support tools: Accelerating discovery and innova-

tion. Commun. ACM 50 (2007), 20–32. Issue 12.

https://doi.org/10.1145/2702613.2702975

193

Arno Schödl, Richard Szeliski, David H Salesin, and Irfan Essa. 2000. Video textures.

In Proceedings of the 27th annual conference on Computer Graphics and Interactive

Techniques. ACM Press/Addison-Wesley Publishing Co., 489–498.

David Schroeder, Dane Coffey, and Daniel F Keefe. 2010. Drawing with the flow: A

sketch-based interface for illustrative visualization of 2D vector fields. In Proceed-

ings of the Seventh Sketch-Based Interfaces and Modeling Symposium. Eurographics

Association, 49–56.

D. Schroeder and D. F. Keefe. 2016. Visualization-by-Sketching: An Artist’s Interface

for Creating Multivariate Time-Varying Data Visualizations. IEEE Transactions on

Visualization and Computer Graphics 22, 1 (Jan. 2016), 877–885. https://doi.

org/10.1109/TVCG.2015.2467153

Will J Schroeder, Bill Lorensen, and Ken Martin. 2004. The visualization toolkit: an

object-oriented approach to 3D graphics. Kitware.

Michael Sedlmair, Christoph Heinzl, Stefan Bruckner, Harald Piringer, and Torsten

Möller. 2014. Visual parameter space analysis: A conceptual framework. IEEE

Transactions on Visualization and Computer Graphics 20, 12 (2014), 2161–2170.

Michael Sedlmair, Petra Isenberg, Miriah Meyer, and Tobias Isenberg. 2018. The 7th

biennial BELIV workshop, BELIV 2018: evaluation and Beyond - methodoLogIcal

approaches for Visualization. In IEEE VIS, Accepted Workshop.

Adrien Sengal. 2015. Grewingk Glacier. https://www.adriensegal.com/grewingk-glacier.

Accessed March 2019.

François Sillion, George Drettakis, and Benoit Bodelet. 1997. Efficient impostor ma-

nipulation for real-time visualization of urban scenery. In Computer Graphics Forum,

Vol. 16. Wiley Online Library, C207–C218.

Jason S Sobel, Andrew S Forsberg, David H Laidlaw, Robert C Zeleznik, Daniel F

Keefe, Igor Pivkin, George E Karniadakis, Peter Richardson, and Sharon Swartz.

2004. Particle flurries. IEEE Computer Graphics and Applications 24, 2 (2004),

76–85.

https://doi.org/10.1109/TVCG.2015.2467153
https://doi.org/10.1109/TVCG.2015.2467153

194

Richard Stoakley, Matthew J Conway, and Randy Pausch. 1995. Virtual reality on a

WIM: interactive worlds in miniature. In Proceedings of the SIGCHI conference on

Human factors in computing systems. ACM Press/Addison-Wesley Publishing Co.,

265–272.

Marc Swackhamer, Andrea J Johnson, Daniel Keefe, Seth Johnson, Ross Altheimer,

and Aaron Wittkamper. 2017. Weather report: Structuring data experience in the

built environment. Proceedings of Architectural Research Centers Consortium (2017),

102–111.

Natalya Tatarchuk. 2005. Practical dynamic parallax occlusion mapping.. In SIG-

GRAPH Sketches. Citeseer, 106.

Laura G Tateosian, Christopher G Healey, and James T Enns. 2007. Engaging view-

ers through nonphotorealistic visualizations. In Proceedings of the 5th international

symposium on Non-photorealistic animation and rendering. ACM, 93–102.

Alex S Taylor, Siân Lindley, Tim Regan, David Sweeney, Vasillis Vlachokyriakos, Lillie

Grainger, and Jessica Lingel. 2015. Data-in-place: Thinking through the relations

between data and community. In Proceedings of the 33rd Annual ACM Conference

on Human Factors in Computing Systems. ACM, 2863–2872.

Annie Thomson. 2019. Design review in VR: The power of im-

mersive collaboration. https://resources.unity.com/webinars/

design-review-in-vr-the-power-of-immersive-collaboration

Barbara Tversky, Julie Bauer Morrison, and Mireille Betrancourt. 2002. Animation: can

it facilitate? International journal of human-computer studies 57, 4 (2002), 247–262.

Andries Van Dam, Andrew S Forsberg, David H Laidlaw, Joseph J LaViola, and Rose-

mary M Simpson. 2000. Immersive VR for scientific visualization: A progress report.

IEEE Computer Graphics and Applications 20, 6 (2000), 26–52.

virtualdesktop. 2019. Virtual Desktop. https://www.vrdesktop.net/.

Dany Vohl, David G Barnes, Christopher J Fluke, Govinda Poudel, Nellie Georgiou-

Karistianis, Amr H Hassan, Yuri Benovitski, Tsz Ho Wong, Owen L Kaluza, Toan D

https://resources.unity.com/webinars/design-review-in-vr-the-power-of-immersive-collaboration
https://resources.unity.com/webinars/design-review-in-vr-the-power-of-immersive-collaboration
https://www.vrdesktop.net/

195

Nguyen, et al. 2016. Large-scale comparative visualisation of sets of multidimensional

data. PeerJ Computer Science 2 (2016), e88.

Eileen Vote, Daniel Acevedo, Cullen Jackson, Jason Sobel, and David H. Laidlaw. 2003.

Design-by-Example: A Schema for Designing Visualizations Using Examples from

Art. In Proceedings of ACM SIGGRAPH 2003 Sketches and Applications. ACM.

S Wang, D Bailey, K Lindsay, K Moore, and M Holland. 2014. Impacts of sea ice on

the marine iron cycle and phytoplankton productivity. Biogeosciences Discussions 11

(2014), 2383–2418.

Shanlin Wang, Scott Elliott, Mathew Maltrud, and Philip Cameron-Smith. 2015. In-

fluence of explicit Phaeocystis parameterizations on the global distribution of marine

dimethyl sulfide. Journal of Geophysical Research: Biogeosciences 120, 11 (2015),

2158–2177.

Matthew O. Ward. 2002. A Taxonomy of Glyph Placement Strategies for Multidimen-

sional Data Visualization. Information Visualization 1, 3/4 (2002), 194–210.

Colin Ware. 2012. Information Visualization: Perception for Design (3rd ed.). Morgan

Kaufman, San Francisco, CA.

Colin Ware and William Knight. 1995. Using visual texture for information display.

ACM Transactions on Graphics (TOG) 14, 1 (1995), 3–20.

Colin Ware and Peter Mitchell. 2005. Reevaluating stereo and motion cues for visu-

alizing graphs in three dimensions. In Proceedings of the 2nd symposium on Applied

perception in graphics and visualization. ACM, 51–58.

Colin Ware and Peter Mitchell. 2008. Visualizing graphs in three dimensions. ACM

Transactions on Applied Perception (TAP) 5, 1 (2008), 2.

Colin Ware, William Wright, and Nicholas J. Pioch. 2013. Visual Thinking Design

Patterns. Distributed Multimedia Systems Proceedings (2013), 150–155.

Jurgen Waser, Raphael Fuchs, Hrvoje Ribicic, Benjamin Schindler, Gunther Bloschl,

and Eduard Groller. 2010. World lines. IEEE transactions on visualization and

computer graphics 16, 6 (2010), 1458–1467.

196

Jürgen Waser, Artem Konev, Bernhard Sadransky, Zsolt Horváth, H Ribičić, Robert

Carnecky, P Kluding, and Benjamin Schindler. 2014. Many plans: Multidimensional

ensembles for visual decision support in flood management. In Computer Graphics

Forum, Vol. 33. Wiley Online Library, 281–290.

Brandon K. Wiggins, Francesca Samsel, Kristin Hoch, Greg Abram, Joseph Smidt, Sam

Jones, Alex Gagliano, and Morgan Taylor. 2019. The First Water in the Universe.

Proceedings of the 2019 ACM/IEEE International Conference for High Performance

Computing, Networking, Storage, and Analysis (SC). Scientific Visualization & Data

Analytics Showcase.

Brandon K Wiggins and Joseph Smidt. 2018. Cosmological Simulations with Molecular

Astrochemistry: Water in the Early Universe. In American Astronomical Society

Meeting Abstracts, Vol. 231.

Georges Winkenbach and David H Salesin. 1994. Computer-generated pen-and-ink

illustration. In Proceedings of the 21st annual conference on Computer Graphics and

Interactive Techniques. ACM, 91–100.

Phillip J. Wolfram, Todd D. Ringler, Mathew E. Maltrud, Douglas W. Jacobsen, and

Mark R. Petersen. 2015. Diagnosing isopycnal diffusivity in an eddying, idealized

mid-latitude ocean basin via Lagrangian In-situ, Global, High-performance particle

Tracking (LIGHT). Journal of Physical Oceanography 45, 8 (2015), 2114–2133.

Robert C Zeleznik, Joseph J LaViola, D Acevedo Feliz, and Daniel F Keefe. 2002. Pop

through button devices for VE navigation and interaction. In Virtual Reality, 2002.

Proceedings. IEEE. IEEE, 127–134.

Song Zhang, Mark E. Bastin, David H. Laidlaw, Saurabh Sinha, Paul A. Armitage, and

Thomas S. Deisboeck. 2004. Visualization and analysis of white matter structural

asymmetry in diffusion tensor MRI data. Magnetic Resonance in Medicine 51, 1

(2004), 140–147.

Kun Zhao, Naohisa Sakamoto, and Koji Koyamada. 2017. Using interactive particle-

based rendering to visualize a large-scale time-varying unstructured volume with

197

mixed cell types. In Pacific Visualization Symposium (PacificVis), 2017 IEEE. IEEE,

185–189.

L. Zhou and C. D. Hansen. 2016. A Survey of Colormaps in Visualization. IEEE

Transactions on Visualization and Computer Graphics 22, 8 (Aug. 2016), 2051–2069.

https://doi.org/10.1109/TVCG.2015.2489649

https://doi.org/10.1109/TVCG.2015.2489649

	Acknowledgements
	Abstract
	List of Figures
	Introduction
	Art and Science
	Palpable Visualizations
	Thesis Statement
	Contributions
	Overview of this Dissertation

	Related Work
	Making Visualizations Discernible
	Creative Design
	Grounding Visualizations in the Physical World

	Bento Box: Current State-of-the-Art for Immersive SciVis
	Introduction
	Related Work
	Ensemble Visualization & Comparative Visualization
	Flow Visualization & Animation
	Bimanual & 3D User Interfaces

	Bento Box: Concept, Visual Layout & Interface
	Concept and Visual Layout
	Zooming and Reframing the Widget
	Creating and Reframing Sub-Volumes
	Changing the Visualization with the Design Palette
	Using the Interactive Timeline
	Rendering Multiple Clipped Volumes

	Application and Results
	Background: Cardiac Leads in the Right Atrium
	Sampling and Visualizing Solid Domain Data
	Sampling and Visualizing Fluid Domain Data
	 blackExpert User Evaluation and User Feedback
	Memory Usage and Rendering Performance

	Discussion of Limitations and Future Work
	Conclusion

	Studies in Accessible Design
	Introduction
	Study 1: Weather Report
	Weather Report Concept
	Visualization and Interaction Design
	Observations, Surprises, and Reflections

	Study 2: Lift-Off for Medicine
	Introduction
	Related Work
	Application 1: Annotation of Medical Data
	Application 2: Immersive Medical Device Design

	Conclusions
	Weather Report
	Lift-Off

	Conclusion

	A Theory and Implementation of Artifact-Based Rendering
	Introduction
	Related Work
	Artistic Techniques and Theories in Visualization
	Artists and Designers in Visualization
	Data Physicalization and Human Connection
	Colormaps and Textures for Visualization

	Artifact-Based Rendering for Visualization
	Stage 1: Creating and Curating Artifacts
	Stage 2: Digitizing, and Translating Artifacts
	Stage 3: Data-Visual Mapping and Visualization
	Data Management

	Discussion
	ABR Design Guidelines
	Pairing with Perceptual Guidelines

	Conclusion

	Applications and Results of Artifact-Based Rendering
	Introduction
	Internal Exploratory Design Study
	Methodology
	Results and Interpretation

	Applications and Guidelines
	Macroalgae in the Gulf of Mexico
	Brain Microstructure Imaging
	Astrophysics
	Abstract Data and Future Work

	Conclusion

	Data Streaming and Remote Rendering for 3D Scientific Visualization
	Introduction
	Related Work
	Remotely Visualizing Large Volumetric Datasets
	Untethered HMDs, Remote Rendering, and Latency Mitigation for AR/VR

	Architecture
	Motivation and Goals
	High-Level Architecture Design
	High-Level Implementation Approach
	Remote Rendering Architecture
	Content Frame Facade Generation

	Performance Characterization
	Data Streaming Performance Characterization
	Remote Rendering Performance Characterization

	Results
	Implementation of Data Streaming
	Demonstration of Data Streaming
	Performance & Discussion of Data Streaming
	Implementation of Remote Rendering
	Demonstration of Remote Rendering
	Performance & Discussion of Remote Rendering

	Roadmap
	Formal Evaluation of Performance Characterizations
	Further Development

	Conclusion

	Conclusion
	Discussion and Ongoing Work
	Artifact Based Rendering
	Data Streaming & Remote Rendering

	Summary and Review of Primary Contributions
	Vision of the Future
	General Conclusions

	References

