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1 INTRODUCTION

Predictive models for human performance, such as Fitts’ Law [2]
and the Steering Law [1], are useful tools for developers of inter-
active applications because they help guide us toward effective and
efficient interface designs. In this poster, we present a mathemati-
cal model in this style that is meant to characterize performance in
precise, continuous 3D input tasks, such as making an exact tracing
of a 3D curve presented in virtual reality (VR).

This continuous, sweeping style of 3D input has important impli-
cations for interactive visualizations. We utilize within our group,
direct input of curved 3D paths in several visualization contexts,
for example, free-form modeling for designing scientific visualiza-
tions and creating 3D illustrations [3] and selecting streamlines and
regions of interest in interactive 3D fluid flow visualizations. [5]
In addition, a current project seeks to utilize haptic-guided input
of 3D curved paths for querying 3D datasets and selecting fine de-
tail within dense visualizations of neural fiber tracts in the brain.
Increased knowledge of our ability to control precise 3D input is
likely lead to improved interaction and more productive user expe-
riences in these interactive visualizations.

One of the challenges in working with this style of input is that
it can be difficult to control with precision. In a precursor to this
work, we developed two new interaction techniques, a two-handed
3D tape drawing interface and a one-handed 3D drag drawing in-
terface. Each significantly improves the precision of continuous 3D
input as compared to standard modes of tracking a moving prop
through the air. Full details of these interfaces and of the trac-
ing experiment described briefly below have been presented else-
where. [4] The novel contribution of the work presented here (and
adapted from Daniel Keefe’s dissertation [3]) is the derivation of a
performance model for this style of input from theory in related dis-
ciplines and the verification of this model using experimental data
from the tracing experiment.

2 HIGH-LEVEL MODEL DERIVATION

Our model draws heavily upon the structure of Accot and Zhai’s
Steering Law, [1] and we extend it based on theories of anisotropy
in control of visually guided motion along 3D axes [7] and the re-
lationship between drawing speed and curvature (the Power Law)
described within the neuroscience literature. [6]

The Steering Law describes the time taken to steer (by drawing)
through a “tunnel” constraint. A practical example is a File menu.
The mouse starts at the top and traces a path downward without
going outside the boundaries of the menu until it selects the appro-
priate item. Task completion time 7 is proportional to an index of
difficulty D defined by the length of the tunnel A and its width W:
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Figure 1: Experimental setup for the 3D tracing experiment.

Several variations on the law are possible, and more general forms
can capture tunnels that follow curved paths and have varying
widths. The Steering Law also has a local form:

(@)

where v(s) is the drawing velocity at a point s along the path of the
tunnel, W (s) is the tunnel width at that point, and 7 is an empirically
determined time constant.

The Steering Law excels at describing input intended to be as
fast as possible, but consider an alternative style of input, intended
to be as precise as possible. Rather than drawing through a tunnel,
consider an exact input task, such as tracing a thin line. In this
situation, the width term of the Steering Law approaches zero as
users try to be as exact in their input as possible. Since tunnel width
is less useful in this situation, we are interested in identifying other
factors that may be used to describe the difficulty of this task. We
introduce two factors below and then show how they may be used
within a refined local index of difficulty.

From literature on perception and studies of interactionwithin
VR [7] we know that differences exist in human perception and
motion along various axes. Specifically, errors in perception and
motor control are largest by far along the depth axis and slightly
larger along the vertical axis as compared to the horizontal. These
differences suggest that the orientation of the input (the drawing
direction) may play a role in the difficulty of the task. This leads
us to the first of three revised local indices of difficulty, which we
will compare in the next section. The first suggested local index of
difficulty is a weighted sum of the components of the local direction
of input d(s):
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A second factor that may contribute to a local index of difficulty
is the local curvature of the input trajectory. This notion is sup-
ported by the Power Law within the neuroscience literature. [6] The
Power Law describes a relationship between curvature of a draw-
ing trajectory and the drawing speed. It has been shown that in
rhythmic drawing and writing movements, the speed of drawing
decreases in areas of high curvature according to the following re-



lation:

(C))

where v(s) is the local drawing speed, K (s) is the local curvature,
B is a constant, typically close to 1/3, and k is a empirically de-
termined velocity gain factor. The second suggested local index of
difficulty adds this concept to the first:

D (s) = wyldy (s)| + we(—d(s)) + wiK (s)P. ®)

Finally, we introduce a third, more complete local index of dif-
ficulty that includes a cross-product term to account for potential
interactions between local curve orientation and curvature.
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Since each model builds on the previous, we hypothesize that,
of the three, model D3 will be most closely correlated with experi-
mental measures of task difficulty. In the next section we report on
analysis designed to test this hypothesis and verify that each term
in the model is significant.

3 VERIFICATION OF THE MODEL

In order to verify and compare the three models put forth for a lo-
cal index of difficulty, we examine data from a 3D tracing experi-
ment. [4] We briefly review the experimental design and measured
data below before reporting on the correlations of the models with
this data.

3D Tracing Experiment: The experimental setup for the 3D
tracing experiment is shown in Figure 1. Twelve participants used a
desktop-scale, stereoscopic, head-tracked VR environment to com-
plete the study. A Phantom force-feedback device was used to input
3D trajectories. Four alternative interfaces for continuous 3D in-
put were compared: 1. a novel, haptic-aided, two-handed, 3D tape
drawing interface (tape), 2. a novel, one-handed version called drag
drawing (drag), 3. a standard freehand 3D input technique (free),
and 4. a haptic-aided freehand technique, called sand because a
friction effect makes the stylus feel as though it is being moved
through loose sand. Results in Figures 2 and 3 are categorized by
these interfaces.

Each participant performed 100 trials consisting of tracing a ran-
domly selected 3D curve presented in VR using one of the input
techniques. Three measures of performance were recorded: draw-
ing time, positional error, and directional error. Due to space lim-
itations, in this abstract, we will present results from just local di-
rectional error, which is calculated as the mean angle between the
tangents of the prompt curve and the curve drawn by the user over
corresponding local samples of the tracing data.

Statistical Analysis: Figure 2 shows a scatter plot of samples
from the experimental data. For each sample point a local index of
difficulty is calculated according to the D3 model and this is plotted
against the measured local directional error averaged across sub-
jects. We see a strong linear trend, indicating that there is a high
correlation between the index of difficulty and the experimental
data. Similar trends are seen for the other measures of task diffi-
culty, positional error and drawing time.

Figure 3 compares the quality of the three models proposed
above. The adjusted R? value is a measure of the amount of vari-
ance in the data explained by the model, corrected to account for
differences in the number of degrees of freedom in each model.
The staircase pattern in the graph suggests that we may confirm our
hypothesis. Each successive model does improve upon the previ-
ous. Again, similar trends can be seen for the other measures not
reported here.
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Figure 2: Experimental data describing local measured directional
error are plotted against the local index of difficulty, Ds.
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Figure 3: Comparison of model fit for directional error data adjusted
for number of degrees of freedom in each model. Differences be-
tween models are significant. (Hierarchical multiple regression, F-
Test on R-square change, p < .05.)

4 CONCLUSIONS AND FUTURE WORK

Based on this analysis, we learn that both local direction and curva-
ture of the input trajectory are important factors in quantifying and
predicting the difficulty of precise 3D curve input. Additional anal-
ysis reveals that the relative importance of these two factors changes
depending on the particular input technique used. Thus, we be-
lieve this expansion of the Steering Law model holds promise both
as a tool for guiding design decisions in interactive applications
and providing a framework for interface comparison. We are cur-
rently expanding this work by investigating global models formed
by integrating the local formulations presented here along entire 3D
curves.
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