

Introduction

We propose a system to allow computational tools to work effectively with big data and to ultimately achieve simulation-based medical device design. The system

- provides finite element analysis (FEA) predictions for design problems.
- takes advantages of high performance computing (HPC) to largely reduce the time to predicted results.
- equipped with interactive interfaces to enable creative forward and inverse design searches over design spaces.

A System for Optimizing Medical Device Development Using Finite **Element Analysis Predictions**

Chi-Lun Lin¹, Ashutosh Srivastava³, Dane Coffey², Daniel Keefe², Marc Horner³, Mark Swenson³, Arthur Erdman¹ ¹Mechanical Engineering & ²Computer Science and Engineering, University of Minnesota., ³ANSYS, Inc.

Conclusions

The proposed system

- integrates computational simulations into the early stages of device design.
- provides with multiple data sources, such as input data, FEA output data and motor evaluation results, in an integrated design environment.
- enables interactive and efficient design exploration in a large design space.
- can provide more design insights before producing physical prototypes for animal and human tests.

Future work includes

- improving the accuracy of the cutting model.
- building a more comprehensive tissue library.
- adding predictions with multiple levels of resolutions, such as analytical and experimental data.
- creating design scenarios and conducting user study of this system.

Acknowledgements

The authors would like to thank for the the University of Minnesota Supercomputing Institute for the HPC resources support. This research was supported by NSF CGV: Small #1218058 and NIH #1R01-EB018205.

Further Information

More information about our 3D visualization system can be found at IV/LAB's website: http://ivlab.cs.umn.edu/project_meddev.php

Contact for questions regarding the system integrations, modeling and simulations of the tissue cutting: <u>linxx691@umn.edu</u>