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1 INTRODUCTION

Scientific visualization tools are rapidly embracing the necessary
challenge of simultaneously visualizing multiple parameterized sim-
ulation data sets [8]. In the new paradigm, scientists hope to under-
stand parameter relationships and stochastic trends that exist in a
parameter space [6,7]. At the same time, virtual reality (VR) environ-
ments have enabled exciting possible opportunities for exploring and
comparing time varying spatial data sets [3]. Although VR offers a
unique perspective to view 3D and 4D data, it requires high framer-
ates for interactivity and optimized use of precious GPU memory.
Accurate simulations, on the other hand, are often very large due to
dynamic unstructured mesh resolutions and small timesteps, making
it difficult to simply render even one data set. To solve this, large
data visualization frameworks often use data sampling and efficient
rendering techniques to engage the GPU [1, 8]. Even then, VR is
mostly used to add a stereoscopic view, and is rarely an integral part
of interactive data instance comparison [3].

We present a framework for interactively comparing multiple
large fluid structure interaction (FSI) simulations by extending a
VR application called Bento Box. Our approach uses rendering,
sampling, and streaming strategies to optimize memory on the GPU
while achieving interactive framerates. We analyze our approach by
comparing 10 cardiac lead FSI simulations, totaling 39GB, in two
separate VR environments. Surprisingly, visualizing spatial relation-
ships and interaction between data parts in multimodel scenarios
(i.e. fluid and structure interactions) is rarely explored [2]. Our
contribution provides a case study for building a multi-instance VR
comparison tool for FSI data sets that are too large to fit onto a GPU.

2 FLUID-STRUCTURE INTERACTION USING BENTO BOX

Fluid-Structure Interactions (FSI), the coupling of fluid and solid
domains, are critical to the success of many engineering applications
including developing medical devices, bridges, airplanes, and en-
gines. Consider the case of analyzing how the stiffness and length of
cardiac lead affects blood flow and tissue stress in the right atrium
of a heart [5]. An engineer must discover what length and stiffness
of the lead adequately attaches to the heart wall while minimizing
the effect on the surrounding blood flow.

In order to understand the differences between multiple FSI simu-
lations, like the cardiac lead model, we extend a general VR compar-
ison tool called Bento Box. Bento Box allows users to interactively
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Figure 1: The Bento Box application displaying multiple instances and
many views of a parameterized cardiac lead model.

select and drill down to linked regions of interest across several
instances. Fig. 1 shows the bimanual 3D interface specifically built
for immersive VR environments where users can view and build
a comparison grid. The columns in the grid represent instances
and the rows linked sub-volumes of interest. The first row shows
an overview of each simulation. From any cell, engineers can in-
teractively create linked regions of interest (new rows) by clicking
and dragging a bounding box inside the zoomed-in volume. There-
fore, users can compare many spatially relevant views side-by-side
based on user-defined volumes of interest (i.e. stress where the lead
touches the heart and blood flow patterns elsewhere). Time steps
can be compared by adding new columns for each visible instance.
Users interact by selecting and zooming into a set of cells using a
laser pointer. They can then immersively reposition, resize, change
color maps, change visible variables, scroll through time, and create
new sub-volumes of interest to customize each linked row.

3 METHODS

Due to large data instance sizes, we can not simply load all the data
onto the GPU. In order to make Bento Box possible for multiple
large FSI simulations, we implement different rendering, sampling,
and streaming strategies for the solid and fluid domains.

The solid domain represents variables like position, displacement,
stress, and pressure. A triangular mesh is first generated from the
unstructured grid primitives provided by the simulation. Positional
attributes like displacement and stress are stored in separate vertex
arrays on the GPU. We then use standard mesh rendering techniques
to show the solid volume textured by a user selected attribute, while
a vertex shader displaces vertex positions based on the time step.

Since it is not possible to load all the solid data on to the GPU,
we use a temporal sampling technique in order to maximize the
mesh resolution for accuracy. Perceptual research suggests static
views more helpful than animated views for data analysis tasks like
comparison [4], so we assume solid data is streamed in on demand.
This, however, presents a significant challenge as achieving efficient
GPU memory management and fast update speeds is a complex
balancing act. Our solution stores variables in their own vertex



Table 1: Characteristics and memory usage for the ten data instances.

Raw Solid (MB) Fluid (MB) Total (MB)
ID (MB) Processed GPU Proc. / GPU Processed GPU

108-1145 5,252.6 892.6 7.0 115.2 1,007.8 122.2
108-1289 4,724.4 682.2 7.0 115.2 797.4 122.2
108-1432 4,911.5 682.2 7.0 115.2 797.4 122.2
110-1145 2,933.7 660.9 6.7 115.2 776.2 122.0
110-1289 2,933.7 660.9 6.7 115.2 776.2 122.0
110-1432 2,933.7 660.9 6.7 115.2 776.2 122.0
112-1145 4,926.1 687.5 7.0 115.2 802.7 122.3
112-1289 4,934.6 687.5 7.0 115.2 802.7 122.3
112-1432 4,934.6 687.5 7.0 115.2 802.7 122.3
116-1145 1,588.9 832.4 6.9 115.2 947.6 122.1

40,073.6 7,134.7 69.1 1,152.3 8,287.0 1,221.4

Figure 2: Framerate data based on visual grid size.

arrays on the GPU, which are indexed by visible time step and then
by position. Updates to the GPU from the CPU, therefore, only
happen if a time step changes or different variables are selected.
When a variable changes, the full array needs to be updated, and
when a time step changes, only the specific time step information
needs to be updated. Therefore, the indexing scheme is optimized
for time step changes, allowing for efficient solid domain animation.

For the fluid domain we use a spatial path line sampling and
instanced particle rendering. Path lines are generated offline using
an accelerated cell location data structure. We use random sampling
for choosing the particle seed locations and advect them backwards
and forward in time. The end result is hundreds of thousands particle
paths across all data instances, stored as data buffers on the GPU.
The GPU also stores path value buffers for data variables such as
velocity and pressure that may be used for particle visualization.

In order to optimize the memory on the GPU, we only store
one simple axis-aligned glyph mesh. The Bento Box application
specifies the number of particles to render based on zoom factor
or desired particle density. From there, we render the glyph using
instanced rendering, which allows thousands of particles to be drawn
with one draw call. Based on the instance number, we look up
the particle path in the vertex shader and modify the glyph vertex
positions to follow the path at the desired time step. This fluid
domain rendering method makes it possible to visualize the flow at
any scale and any time from the same pre-calculated data. Thus,
changing or adding a visible time step does not use any additional
GPU memory or require additional CPU-GPU memory updates.

4 DATA AND RESULTS

The cardiac lead data sets are built using the ABAQUS solver. The
bounding geometry of the right atrium is a smoothed version of
a real heart anatomy captured via CT scan, and the cardiac lead
is modeled as a uniform wire entering the right atrium through
the superior venae cavae and exiting through the tricuspid valve.

Characteristics for ten visualized data instances are reported in Ta-
ble 1. After processing the 39 GB of raw data, the amount of
memory needed to accurately visualize the solid and fluid attributes
is over 8 GB, exceeding a 4 GB GPU hardware limit on our 4-wall
cave environment, a 2 processor Intel(R) Xeon(R) CPU E5–2640
@2.50GHz machine with two NVIDIA Quadro K5000 cards and
192 GB of RAM. Streaming combined with the pathline sampling of
the fluid, provides an extremely low memory footprint on the GPU,
allowing us to visualize many instances and variables.

Using the Bento Box application as a testbed, we also report
some rendering performance measures, summarized in Fig. 2. These
timings were recorded on a 4 core processor Intel(R) CORE(TM)
i7–7700HQ CPU @2.80GHz machine with 16 GB of RAM and a
NVIDIA GeForce GTX 1070 graphics card, which was configured
to drive an HTC Vive with a resolution of 2160 × 1200 pixels. The
data sets are streamed into memory from a 128 GB M.2 PCIe SSD.
The scatter plot in Fig. 2 shows a systematic sampling of Bento
Box grid configurations that are possible for this 10-instance data
ensemble. All possible grid arrangements that result in a total of 40
cells or less were sampled. The trend is above 30 frames-per-second
for Bento Box arrangements of about 20 cells or less, and is in the
40–50 frames-per-second range for smaller arrangements.

5 CONCLUSION

Our extension to the Bento Box application allows the comparison
of multiple large FSI simulations at interactive rates, a rare feat ac-
cording to the scientific visualization literature. In fact, our sampling
algorithms were able to reduce 39GB of simulation data to 1.22GB
on the GPU, implying that the number of instances can scale further.
We hope that this case study can inspire more work in combining
large data visualization techniques with interactive exploration.
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