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Figure 1: Upper-Left: 3D spatial visualization tools, like Paraview [3], work well for calculating and visualizing streamlines, but it is
challenging to refine these visualizations in ways that a skilled illustrator would (e.g., by emphasizing specific lines or portions of
lines). Bottom-Left: The Drawing in the Flow starts by importing a dense 3D line set (e.g., generated in Paraview with streamlines
seeded on a regular 3D grid or randomly). These define an underlying 3D data “canvas”, which can optionally be visualized
to provide context. Middle: Users then work with a bimanual 3D sketching interface to draw lines that (roughly) follow the flow,
controlling the length, density, color, and other stylistic properties as with any digital painting tool. “Ink-data settling” morphs these
hand-drawn lines to match the underlying vector flow data, and “lazy data binding” can be used to tie color and line width to
underlying scalar data (e.g., speed, pressure). Right: The result is an accurate semi-immersive 3D multivariate flow visualization
customized without programming or scripting to emphasize particular features for teaching or other illustrative purposes.

ABSTRACT

We present “Drawing in the Flow”, a mixed-reality 3D user inter-
face for authoring illustrative, multivariate 3D flow visualizations
by sketching on, or better stated, in, 3D data. The approach inter-
prets hand-drawn 3D strokes relative to an underlying data “canvas”
and applies animated “ink-data settling” to ensure the strokes accu-
rately reflect vector field data (i.e., 3D streamline paths). Color and
other visual properties are interpreted relative to scalar data vari-
ables with “lazy data binding” to help users prioritize creative visual
design tasks. Results include example 3D illustrations of multiple
flow fields. The work is significant because of the ability to make
authoring accurate 3D mixed reality data visualizations accessible
to stakeholders without programming or scripting experience and
because it demonstrates a novel approach to balancing the tradeoff
between accuracy and expression in 3D data visualization.
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1 INTRODUCTION

While visualization techniques for analyzing and explaining com-
plex spatial phenomena (e.g., fluid flows) have made great strides,
the tools needed to create these 3D visualizations, which are of-
ten viewed in virtual or mixed reality (MR) displays, remain com-
plex and, generally, not accessible to stakeholders who do not have
advanced training in programming or data processing. This con-
tributes to two challenges that are longstanding in the field. First,
it limits contributions to visualization from visual artists, design-
ers, illustrators and others who, if they had the right tools, might be
able to apply their deep visual training and creativity to improve
these hard-to-design spatial visualizations. Second, the high ef-
fort required to create a visualization means that we gravitate to-
ward creating visualization techniques that work in a wide variety
of general cases rather than custom domain-and-task-specific visu-
alizations. Of course visualizations that work well in many cases
are important, valuable, and a great starting point, but they are not
necessarily the best end point. A medical illustrator will fine-tune
their drawing to emphasize some features and de-emphasize others;
a thermodynamics professor sketching a fluid flow on a whiteboard
will selectively emphasize the flow features that relate to the current
lesson; a climate scientist drawing a picture of changing patterns in
ocean currents will always desire an accurate picture, but they will
simultaneously adjust that picture to best suit the audience (e.g.,
elementary school students, scientific colleagues, policy makers).



Our work is, therefore, motivated by the goal of giving all stake-
holders who work with 3D spatial visualizations the power to create
and customize these visualizations with an interface that is as nat-
ural as sketching. We are not the first researchers to explore this
direction. Prior work has found that sketching interfaces can be
a valuable way to design custom data visualizations for both 2D
non-spatial data [13, 16] and, as in our case, 3D spatial data [11].
However, a number of open challenges remain.

This short paper contributes to, perhaps, the most important
theme and research question in sketch-based visualization author-
ing: How to balance the inherent tradeoff between accuracy and
expressiveness? From prior research, we know the answer depends
upon the style of visualization. The TimeSplines technique [15],
for example, does an exceptional job of finding this balance for
2D personalized, curved timeline visualizations—within this style,
the tool is exceptionally expressive. Similarly, Visualization-by-
Sketching [21] finds the right balance between accuracy and ex-
pressiveness for multi-layered 2D scalar and vector fields visualized
using hand-drawn animated glyphs and hand-painted color maps.

Our contribution is specific to working with 3D spatial data vi-
sualized with a perspective-tracked stereoscopic display. Although
there is a long, successful history of 3D sketching and painting in
virtual reality [9], we do not yet understand the user-interaction
metaphors and data binding techniques needed to find a similar
“right balance” between accuracy and expressiveness in this con-
text. To this end, as shown in Fig. 1, we introduce a bimanual user
interface for 3D sketching while inside 3D fluid flow data, and we
demonstrate how to interpret “ink-data settling” [20] and “lazy data
binding” [13], two important concepts from prior 2D sketch-based
visualization authoring tools, to the 3D sketching and 3D spatial
data context.

2 RELATED WORK
2.1 Authoring Visualizations without Programming

A variety of visualization tools have been developed to enable users
to construct charts and visualizations without programming. Work
in this direction relies on 2D graphical user interfaces to facil-
itate dragging and dropping data fields [23], suggestion-directed
visualization [26, 27], and constraint-based and direct manipula-
tion [17, 19]. All of these tools have the common objective of
reducing the technical barrier to expand the set of users involved
in creating data visualizations. Continuing with this objective, Al-
powered authoring tools have been used to automate data transfor-
mation and chart generation [25], as well as to alter charts via user
prompts [22]. Across these approaches, there are varying degrees
of expressivity, learnability, and effectiveness, leading toward more
powerful yet accessible visualization authoring solutions for non-
programmers. Although generally effective in reducing technical
barriers to creating data visualizations, there is potential to do even
more in this style, for example, moving beyond the keyboard and
mouse, to create styles of user interaction that better match how
traditionally trained visual designers work.

2.2 Sketching for Non-Spatial Data Visualization

Sketching on paper has always been an important way to quickly
explore an idea and iteratively refine it [24], and researchers have
long sought to translate these powerful properties of sketching
into computer-based tools. For non-spatial data visualized using
2D vector-based graphics, Data Illustrator [13] focuses on flexible
data-to-design mappings that enable users to embed data into lines,
shapes and their anchor points. Data Illustrator also introduces the
concept of “lazy data binding” for non-spatial data, which has influ-
enced our work and other follow-on systems, like TimeSplines [15]
and DataGarden [16]. DataGarden specifically brings in the ability
to attach the data to sketched glyphs allowing for more expression
in the shapes that represent the data.

2.3 Sketching for Spatial 2D Data Visualization

Our approach is geared toward visualizing spatial data, and the prior
work here is also informative. Drawing with the Flow [20] intro-
duced a sketch-based interface for visualizing 2D vector fields by
implementing a concept called “Ink-data settling”, where strokes
gently morph to match the underlying vector field data after they are
drawn. Our work builds on this by moving into the mixed reality
space with 3D vector and scalar data. A closely related follow-up is
Visualization-by-Sketching [21], which extends the gestural sketch-
ing method to animated mulitvariate geospatial data with colormap
adjustments and animated streaklets. From the user’s standpoint,
the way that Visualization-by-Sketching infers color maps from the
digital paint applied by artists feels much like the ”lazy data bind-
ing” concept because the user’s first actions and focus are on creat-
ing the visual, and the details of the data mapping come later. These
works have directly informed our new 3D sketching interface.

2.4 Sketching for Spatial 3D Data Visualization

Sketching has been extensively studied as a 3D data selection tech-
nique (e.g., [1, 5]). Sketching has also been used to more intuitively
design volume rendering transfer functions and manipulate volume
data (e.g., [6]). However, these systems employed 2D sketching
input on a tablet or monitor displaying 3D graphics. Our specific
interest is in exploring the potential of 3D sketching in perspective-
tracked, stereoscopic virtual and mixed reality since this is an in-
creasingly common medium for data visualization.

3D sketching is “a type of technology-enabled sketching where:
(1) the physical act of mark making is accomplished off-the-page
in a 3D, body-centric space, (2) a computer-based tracking system
records the spatial movement of the drawing implement, and (3) the
resulting sketch is often displayed in this same 3D space, for exam-
ple, via the use of immersive computer displays, as in virtual and
augmented realities (VR and AR) [2].” 3D sketching has been used
previously to prototype hard-to-design virtual reality visualizations
via a process called “Scientific Sketching” [11]. The design process
has been used for many years, most recently to prototype visualiza-
tions of physics simulations for paleontologists [14]. Its benefits are
that it is accessible to visual artists and designers and that the proto-
types can be critiqued in the target medium of VR. However, it has
the major shortcoming that the sketches produced are not bound to
data (i.e., they are designs only, not data-driven visualizations).

On the other extreme, Artifact-Based Rendering [10] introduced
using physical materials from nature and traditional artistic media
(sketching, drawing, painting, sculpting). All of the visual ele-
ments are hand-crafted by artists and then digitally scanned and
finally bound to data using a puzzle-piece-style visual program-
ming interface [7]. The expressiveness of the resulting visualiza-
tions is outstanding, even motivating research on affect in visual-
ization [18, 28], but the approach does not have the immediacy and
intuition of working with sketch-based interfaces directly in a visu-
alization environment. Our work seeks to fill this gap, introducing a
3D sketching interface for designing 3D spatial data visualizations
directly within the target medium.

3 DRAWING in THE FLow

This section introduces the data processing, user interface, and al-
gorithms for our conception of Drawing in the Flow.

3.1 Data Pre-Processing

We use Paraview [3], an open-source scientific visualization appli-
cation, to load and process multi-field volumetric data and our own
custom application written with the Unity Game Engine to imple-
ment the interface and data visualization. The system runs on the
Meta Quest 3 platform. For larger datasets (over 900 streamlines),
we tether the Quest to a MSI Stealth GS77 laptop with NVidia
Geforce RTX 3060 GPU and 12th Gen Intel Core i7-12700H CPU.
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Figure 2: User drawn stroke morphing from where it was drawn to a
flow line then data is bound to the stroke.

The pre-processing in Paraview consists of generating a dense
streamline set for the data using the Stream Tracers filter with an
adaptive Runge-Kutta 4-5 order integrator. We export the resulting
line geometries to a simple data file format that contains a series of
(X, y, z) points with an integration time value and, optionally, co-
located values for multiple scalar data variables at these locations.
This data file is then read into Unity, where we render smooth lines
from the sampled positions as extruded splines.

3.2 Bimanual User Interface

Users then enter the immersive environment, which can run in ei-
ther a fully-immersive VR mode or a see-through MR mode, to
explore the flow data. Upon loading, the flow lines are visualized
as thin white lines that are intended to function as a virtual “un-
derpainting layer” to provide context. The visibility of this layer is
toggled with the primary button (A) on the right-hand controller.

Users walk around to view the visualization, including going in-
side the flow field. By doing so, they can view any part of the flow
field and access specific flow lines. In addition, holding the left con-
troller’s trigger button will ”grab” the artwork and rotate or translate
it to view it from other angles using input from the controller’s six
degree-of-freedom tracking. While grabbing the artwork with the
left hand, holding the right controller’s trigger button activates a
bimanual scaling mode, where the artwork’s scale is adjusted dy-
namically as the controllers are moved nearer or further from each
other, scaling down or up, respectively. The goal of these grab-
bing features is to make it possible to quickly view and/or access
with their hands any location in the 3D flow field. The color of
the brush is adjusted by holding the primary button on the left con-
troller (X), which activates a double-sided cone 3D Hue, Saturation
and Value (HSV) color picker widget modeled on the one in Cave-
Painting [12]. The brush size can be adjusted in a similar method
to scaling the artwork. If the two controllers are held close together
(within a set proximity of each other) pressing the left controller’s
trigger will instead scale the brush in proportion to the distance
between the hands. The entire bimanual interface is implemented
following the strategy described in VR Developer Gems Chapter
14 [7]. Specifically, we implemented a finite-state machine that
changes state in response to various input events, and this makes it
possible to accomplish features like overloading the interpretation
of the trigger buttons on the controllers, which helps the interface
feel immediate, gestural, and fluid—similar to sketching [7].

The most important user interface action is to sketch flow lines.
Again, this is accomplished by holding the right-hand controller’s
trigger button. As seen in the left panel of Fig. 2, the user’s stroke is
visualized using a tube-shaped triangle mesh that is generated dy-
namically, adding one new segment to the tube each graphics frame,
to follow the trajectory (position and orientation) of the user’s hand
movements until the trigger is released.

3.3 Drawing within Data Fields

Our key innovation is in interpreting the strokes drawn with the in-
terface relative to the underlying 3D data field, and we have several
modes and techniques for accomplishing this. Our current imple-

mentation supports binding data to the position, color, and size vi-
sual channels of the hand-drawn strokes. The line data originate
from a vector field in the original dataset, and our approach is to
always bind the position of the users’ strokes to these data using an
“ink-data settling” technique that gently morphs each stroke after
it is drawn to match the underlying data (details described in the
next section). The color and size channels (size is the radius of the
tube geometry) are bound to scalar fields in the underlying data.
The specific data variable to map to each channel does not need
to be defined before drawing so users can focus entirely on visual
experimentation if they wish (i.e., lazy data binding). These bind-
ings can be set, changed, or reset to the originally drawn size and
color at any point during the working session using a menu virtu-
ally “carried” on the non-dominant hand like a palette. In all cases,
whenever a mapping is changed, the drawing responds by updating
with a smooth animated transition. The palette menu in the non-
dominant hand includes controls for these mappings as well as an
annotation mode where the user’s strokes are not interpreting rela-
tive to the data. Finally, the palette menu also includes options to
load preset color maps; however, another way to define the color
and size data-mappings is to simply sketch lines of the desired col-
ors and widths and ask the system to “infer” the mapping (details
described in Sec. 3.5).

3.4 Ink-Data Settling

With ink-data settling, each stroke is interpreted as a depiction of
the underlying flow field, and to make sure these depictions are ac-
curate, after each stroke is drawn, it is smoothly morphed to align
with the most similar streamline in the dense, pre-computed stream-
line set. To compute the similarity of the drawn lines to the precom-
puted streamlines, we use a metric that computes a weighted sum
of differences in distance and direction. For each point along the
drawn stroke (p;), we find the nearest point for each streamline
(p2). Then, we lookup the direction (tangent) of the two lines at
these points (671 and d}). The similarity metric is then calculated
using the following equation with weights w;; = 10 and wy;, = 1
in our implementation.

n
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Computing this metric on a large dataset of streamlines can be com-
putationally expensive and prevent the fast, smooth framerates re-
quired for head-tracked displays. We have implemented two strate-
gies to overcome this. First, the metric described above is computed
incrementally as each stroke is drawn. Second, we use a simple spa-
tial data structure to reduce the number of lines to check. During
program initialization, we divide the volumetric data space into a
regular 3D grid cubes and, for each cube, create a list of the id
numbers of each flowline spline that passes through the cube. This
increases performance because the similarity metric only needs to
be computed for the flow lines that pass through the same cubes as
the user’s drawn stroke. Once the most similar flow line is deter-
mined by minimizing similarity calculation, a segment of that flow
line is found based, again, on the similarity but this time adding the
absolute difference in line length with the segment being compared
as a constraint. The calculation becomes:

(Waise * distance(p1, p2)* +wgir * | - da|) +Wien * |11 — |
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We want only a segment because some flow lines can be long and

only a fraction of the line is necessary to give the impression of the
entire line.

Finally, as shown in Fig. 2, a smooth morph to the line’s new lo-

cation is accomplished with linear interpolation on the positions,

S=

-

i=1



Figure 3: Additional 3D illustrations of the heated and spinning disk
dataset show the range of visual styles that can be created using the
3D sketching interface.

orientations, (optionally) colors and (optionally) widths of each
segment of the stroke. This animation occurs over three seconds.

3.5 Inferring Scalar Data Bindings

Inspired by the 2D Visualization-by-Sketching system [21], color
maps and size scales to apply consistently across the 3D dataset can
be inferred directly from the visual properties of the hand-drawn
strokes. Since the size channel assumes a linear mapping from a
minimum radius to a maximum radius, we use a simple heuristic
to infer this mapping. First, we search all of the drawn strokes to
determine the minimum and maximum sizes for the lines in the
user’s current illustration style. Then, we examine the scalar data
value for whatever data variable is currently bound to size at the
3D locations where these minimum and maximum sized strokes
were drawn to determine the direction of the mapping (i.e., should
size increase when the data values increase or the reverse). Finally,
the inferred mapping is applied consistently to all strokes using, as
always, a smooth animated transition.

The strategy for inferring color is only slightly more complex.
The algorithm identifies all the unique colors drawn by the user.
Then, it calculates the mean value for whatever data variable is cur-
rently bound to color across all of the locations of these strokes,
averaging across all of the sample points that make up a stroke
and multiple strokes (if there are multiple strokes that use the same
color). Finally, it creates a new color map with one control point
for each unique color used in the illustration assigned to a the mean
data value calculated for that color. For perceptual accuracy, all
color interpolation is calculated in the Lab color space.

4 RESULTS

Thus far, we have applied “Drawing in the Flow” to interactively
sketch 3D illustrations of two different representative datasets.
Fig. 1 and Fig. 3 show illustrations of the Paraview example dataset
disk_out_ref.ex2. In pre-processing, we used a point cloud seed-
ing strategy to generate a streamline set with 900 streamlines with
an average of 50 data points per line. Each data point includes the
point’s (X, y, z) position as well as values for the following data vari-
ables at that location: AsH3, CH4, GaMe3, H2, Pressure, Tempera-
ture, Velocity in x, y, z (converted to Velocity Magnitude), Vorticity
in X, y, z (converted to Vorticity Magnitude), Rotation, Angular Ve-
locity, and Normal in X,y,z.

For this dataset, the spatial grid search reduced the computa-
tional time when checking similarity of a stroke to the flow data
from 0.2 to 0.01 seconds. This is sufficient to support running the
calculations in real-time while the stroke is being drawn. The illus-
trations in Fig. 3, created by one of the paper co-authors, provide
some documentation of the variety of styles that can be produced
on the same dataset. Each variation took about 30 minutes to make
from an initial blank visualization.

Fig. 4 shows an illustrative visualization for timestep 46000 of
the “headcurve 40” simulation from the of the FireTec ensemble
dataset [4] provided by Los Alamos National Laboratory in support

Figure 4: Perspective views from walking around a hand-drawn 3D
illustration of a forest fire simulation, with color mapped to velocity
magnitude (tan=low, magenta=high).

of the IEEE VIS 2022 SciVis Contest. In pre-processing, we gen-
erated a streamline set for these data that contains 800 streamlines
with an average of 400 samples per line. This illustration, created
by a second one of the paper co-authors, took approximately 45
minutes to design and create.

5 CONCLUSION, LIMITATIONS, AND FUTURE WORK

Our impression from using the system is that it has potential to be
an engaging and effective tool for visualizing 3D flow data. How-
ever, this is just an early impression, and we plan to conduct a user
study to better understand the strengths and weaknesses of the ap-
proach. Since the primary goals of the tool are to enable rapid ex-
perimentation with a wide variety of 3D line illustration styles, we
believe a reproduction study will be informative. Although they are
not common across all areas of visualization research, reproduc-
tion studies have been used with success recently to understand the
expressive capabilities of a variety of visualization authoring sys-
tems [21, 15, 16]. In this type of study, we would plan, for exam-
ple, to ask participants to recreate successful example visualizations
from prior work, such as the IEEE VIS 2022 SciVis Contest from
which we have already used data (e.g. Fig. 4) [4].

One limitation, and the most obvious avenue for future work,
is to expand the richness of the 3D drawing and painting engine
used in our initial implementation. This should include supporting
multiple brush types and textures, as well as using brush pressure
sensors to add tapering to strokes. A gesture-based interface similar
to the 2D one in Drawing with the Flow could be another valuable
future addition, making it possible to crop, extend, delete, and edit
visualization marks via pen-based gestures that fit naturally into a
sketching process.

Although our early testing has not suggested a direct need, we
can imagine situations where additional tools might be useful to
help users work in extremely dense regions of the flow data, where
occlusion might limit visibility. One potential extension to help
with this would be a magic lens that hides flow lines that cross be-
tween the user’s head and their pen, e.g., similar to the approach
in Force Brushes [8], but extended to MR. Another alternative, po-
tentially complementary, design would hide all lines except for the
ones that pass through a sphere surrounding the user’s pen, similar
to the local flow preview in Drawing with the Flow [20].

Finally, we plan to add support for creating animated flow visual-
izations, first for steady flows, where the work will focus on the user
interface and metaphors for defining some objects as animated and
others as static. Then, we also plan to support time-varying flow
data, where the work will need to explore what it means to sketch
on/in a 3D data canvas that changes over time, including extending
the underlying data structures to accommodate time and pathlines
as opposed to streamlines.
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