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INTRODUCTION

Knowledge of biomechanical properties of tissues is necessary for credible
description of their constitutive behavior in physiological conditions of
normality and stress

A comprehensive and comparative understanding of tissue properties is of
prime importance from the perspectives of device-tissue interactions
Moreover, ablation has become a common medical procedure, which alters
both the structure and function of the ablated tissue; and in small
percentage of cases, it can cause collateral damage of surrounding vital
structures, which can have severe clinical implications

In order to maximize the efficacy of ablative procedures and minimize
collateral damage, it is important to understand the biomechanical
properties of all tissues that may be potentially affected by ablation

We have developed unique methodologies to assess the biomechanical
properties of various tissues under uniaxial stress that include
measurement of force-displacement graphs, stress-strain characteristics,
calculations of avulsion forces, avulsion strains, energies associated with
avulsions, and the elastic moduli of various tissue samples

METHODS

Tissue Preparation and Making of Tissue Bundles

Fresh tissue samples were obtained from castrated male Yorkshire-cross
swine and humans (tissue deemed not transplantable or waste tissue)
Samples included cardiac trabeculae, pericardium, aorta, esophagus
(muscularis and squamous epithelium), diaphragm, lungs, trachea, vastus
lateralis, and rectus abdominus

Tissue biopsies were dissected in oxygenated, temperature controlled
Krebs-Ringers solution

Excess fat and surrounding connective tissue was removed from each
tissue, so that well-defined tissue bundles could be prepared

Each bundle was dissected in a way to give it a dog-bone shape for added
strength at both extremities

In addition, liquid super-glue (cyanoacrylate) was applied on either ends of
the tissue bundle at the suture-tissue interface; which allowed for added
support, enhanced grip, and increased bonding strength at an otherwise
vulnerable location

Tissues such as diaphragm, rectus abdominus, vastus lateralis, cardiac
trabeculae, and squamous epithelium were dissected in cylindrical shape
having lengths of 20 to 25mm, and diameters of 2 to 5mm

Tissues such as aorta, esophagus (muscularis), trachea, and pericardium
were dissected in cuboidal shape having lengths of 20 to 25mm, widths of
2 to 5mm, and thicknesses of 0.25 to 3mm

Bundles were tied on both ends with 2-0 silk sutures with a free loop on
either ends so that they could be mounted on the uniaxial pull machine

Uniaxial Stress Testing

Uniaxial pull testing (tensile strength measurements) was performed to
assess biomechanical properties of various tissues

Digital uniaxial force measurement system (Chatillon TCD 110 Series)

2 versatile force transducers (load cells): (1) maximum force of 10 N
(accuracy: 0.01 N, resolution: 0.001 N); (2) maximum force of 100 N
(accuracy: 0.1 N, resolution: 0.01 N)

Pull protocol designed after gaining experience from executing many pilot
studies on different tissue samples, and conducting extensive literature
search

Tissues have been modeled as viscoelastic materials in this study

Tissues were excised from the animal within a short time (less than two
hours)

Testing was performed at room temperature (22.5 + 2°C)

Uniqueness of this protocol is that it allowed for a slow, yet controlled pull
of samples until avulsion occurred (tissue tears apart)

Pull protocol was selected as having a constant speed of 10 mm/minute, or
a strain rate of 0.167 s over the avulsion stretch

During execution, the system console display screen provided monitoring
of 3 quantities, i.e. the load (N), stretch distance (mm), and speed (10
mm/min)

Data was digitally acquired at a sampling rate of 100 Hz and saved to the
hard drive for post-processing

Force-Displacement Measurements

Once super-glue dried (<2 min), tissue samples were mounted on the pull
machine via custom designed hooks of stainless steel material (needle of
polypropylene sutures, Ethicon)

The bottom suture loop was secured to the lower immobile hook mounted
on the vice and the top suture loop was fixed to the uniaxial pull machine’s
force transducer as illustrated in Figure 1

All tissue samples were stretched along the longitudinal axis of the sample
until the sample avulsed

Before starting the pull tests, initial lengths and diameters (for cylindrical
samples), and initial lengths, widths, and thicknesses (for cuboidal
samples) were recorded; to allow for the determination of the elastic
modulus of each sample using the following equation/calculation:

Elastic Modulus (EM) = Stress / Strain (N/m?)

Stress = Force / Area = F/A (N/m?)

Strain = Change in length / Original length = Al/L

Therefore, EM = (F/A) / (Al/L) = (F/ Al) x (L/A)
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Figure 1. Chatillon digital force measurement system to measure tensile
strength characteristics of different tissues. T: A human esophagus muscle

bundle is shown undergoing tensile strength test.

C: System console to

control the operation of instrument. F: Force transducer (load cell) with 10N
maximum load capacity with a resolution of 1 mN. UH and LH: Custom
designed upper and lower tissue holders hooks. Upper hook is connected
to the force transducer and lower hook is held firmly to the vice as tissue is
pulled to measure tensile strength of muscle bundle sample under test.

Figure 3. A representative example
illustrating center avulsion of human

esophagus muscle bundle.

Tissue # Tissue Type

Total Samples

Load Save

30

28

26

24

Ol

N

Avulsion Force

Figure 2. A representative example showing the force-stretch characteristic
of human pericardium. Six different quantities as mentioned on the graph
are calculated for each sample. Avulsion force data was normalized to the
cross-sectional area, and avulsion energy data was normalized to the
volume of each tissue sample.
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Figure 4. A custom designed software application was written that allowed determination of elastic moduli of tissues.
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A representative example of human pericardium is shown with its dimensional characteristics and elastic modulus.
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Table 1. List of tissues under native and ablated conditions whose biomechanical properties have been evaluated in this investigation.
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RESULTS

Biomechanical properties of 2180 samples of 19 different tissues (8 human
and 11 swine) have been studied

8 human tissues: Aorta, Cardiac Trabeculae, Esophagus, Esophageal
Squamous Epithelium, Lungs, Pericardium, Trachea, Vastus Lateralis

11 swine tissues: Aorta, Cardiac Trabeculae, Diaphragm, Esophagus,
Esophageal Squamous Epithelium, Lungs, Pericardium, Rectus Abdominus,
Spinal Cord, Trachea, Vastus Lateralis

Comparative assessment of 2180 samples along with their stretch
characteristic data is shown in Table 1 and an example in Figure 5

During the stretch, the tissue sample could avulse at any location along the
longitudinal axis of the muscle bundle; hence based on where the tissue
avulsed, five different avulsion locations were identified (i.e. 1 = top-suture,
2 = center-top, 3 = center, 4 = center-bottom, and 5 = bottom-suture) which
were recorded for each sample that is graphically shown in Figure 6
Avulsion Force and Elastic Modulus for diaphragmatic and esophageal
samples is shown in Figure 7 and Figure 8, respectively
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Figure 5. Stretch characteristics Figure 6. Avulsion location
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Figure 7: Normalized avulsion force for diaphragmatic samples (A) and
esophageal samples (B) under native and ablated conditions.
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Figure 8: A: Elastic modulus of diaphragmatic samples (A) and esophageal
samples (B) under native and ablated conditions.

INTERPRETATION

* We have developed methodologies that can be reliably used to assess
biomechanical properties of a wide range of both swine and human tissues
under uniaxial stress

 The stress-strain relationships developed in this investigation can not only be
used to measure intra- and inter-tissue variability, but also provide insights in
the mechanisms by which ablations/diseases affect the mechanical behavior
of tissues
Although our study approach may have a few limitations (only uniaxial
assessment), a comparative understanding of tissue properties is of
importance from the perspective of developing realistic frameworks for
considering device-tissue interactions that can aid in novel medical device
design
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