
FinePoint: A Novel Technique for Object Manipulation that
Bridges the Gap Between Virtual Reality and the Desktop

Sam Torzewski
torze004@umn.edu

ABSTRACT
We present FinePoint, a technique for positioning and ori-
enting objects in three-dimensional space using a six-degree-
of-freedom (6DOF) tracking device. In conventional desktop-
based techniques, 2D interfaces such as the mouse and key-
board are used, but with these tools rotation tasks are diffi-
cult because the rotation has to be broken down into a few
1- or 2D rotations, and translation tasks are difficult due
to lack of depth cues. This puts a greater burden on the
user to orient the object correctly. Standard VR interfaces
focus on free one-to-one movement with 6-DOF input de-
vices, but their accuracy is limited by the un-steadiness of
the user’s hands. FinePoint bridges the gap between the
full one-to-one manipulation of a 6-DOF tracker, often de-
scribed by users as the most natural user interface, and the
precision of a conventional mouse and keyboard by giving
the user many ways of manipulating an object that vary in
speed and accuracy. These methods can be switched be-
tween on the fly, and new methods can be added on a per-
application basis. We use a hierarchical control scheme to
select these methods. We report on a pilot test comparing
a partial implementation of FinePoint to a standard one-to-
one freehand technique. Counter to our initial hypothesis,
we found that FinePoint was slower than the one-to-one ap-
proach when performing 3D docking tasks at a similar level
of accuracy. This pilot has helped us to refine our hypothe-
ses about which aspects of FinePoint will be most useful in
practice and in which tasks FinePoint will be most useful.
Specifically, we find that separating movement methods into
logical groupings is useful, but that further work is needed
to make it practical. These methods would be most useful
for translation tasks rather than rotation. Ultimately, we
believe a FinePoint technique revised and refined accord-
ing to the lessons described in this thesis will allow more
free exploration of data in scientific and medical research,
and allow for faster iteration on design tasks in engineering
fields.

1. INTRODUCTION

Positioning and orienting objects in a virtual three-dimensional
space is challenging. These placement tasks are usually
approached in one of two ways: Desktop-based 2D inter-
faces, or VR-based interfaces that use six-degree-of-freedom
(6DOF) input devices. Desktop-based interfaces employ 2D
input devices, usually the mouse and keyboard. These inter-
faces typically use 3D widgets for manipulating the object
[6], decomposing each task into a series of 1- or 2D tasks.
The VR approach uses a 6DOF 3D tracking device as in-
put to manipulate their 3D objects. The tracker can both
translate and rotate in three dimensions, and their motions
are mapped one-to-one with the tracker so that changes to
the tracker’s position and orientation are duplicated on the
object. Past research by Bérard et al. [12] and Hinckley et
al. [13] suggest that while translation tasks are faster and
more precise with a mouse over a 3D tracker, the reverse is
true for rotation tasks.

To overcome the challenges present with each of these meth-
ods, we present FinePoint, a novel technique for manipulat-
ing an object in 3D space using a pen shaped 6DOF tracker.
The FinePoint technique aims to connect the modular, tool-
based approach of mouse-and-keyboard manipulation tech-
niques with the flexibility afforded by a tracker, in an at-
tempt to leverage the strengths of each. The basis of this
technique is the idea that different methods of moving an
object are constrained in different ways and they have differ-
ent levels of precision and speed. The constraints allow the
user to only have to think about a few degrees of freedom
at a time, without affecting the others. By using several
movement methods in succession, the user makes increas-
ingly granular changes to the object’s position and orien-
tation. The FinePoint technique provides a way for all of
these movement methods to coexist through a state-based
system that separates the methods by type, and then allows
method selection using gestures.

With the introduction of FinePoint, the 3D tracker could
prove to be an important tool for applications that require
movement these positioning and rotation tasks. These tasks
are often required in design, and the increase in speed could
dramatically increase the rate of turnaround for rapid proto-
typing of new devices and tools. This would not only benefit
design tasks, but also aid in the analysis of 3D data. This
breadth of possible applications also suggests that there may
be useful application-specific movement methods, and thus
FinePoint is designed to allow these manipulations to coex-
ist in one technique. The modular nature of the FinePoint



technique means that further research into new manipula-
tion methods can be integrated directly into this technique,
and each application can have FinePoint tailored to its spe-
cific needs.

2. RELATED WORK
2.1 Comparing Mouse and Tracker
We chose the tracker for its increased freedom of motion,
but we cannot ignore the advantages of using the mouse
for this placement task. This approach is faster and more
accurate than 6DOF trackers for translation tasks [12]. A
major problem with this method, though, is that it also
increases the cognitive load on the user. When rotating an
object, this method requires the user to convert their desired
rotation into a series of component rotations, often about
specific axes. These limitations are difficult to overcome
because the device itself can only move in two dimensions.

Using a 6DOF tracker avoids this limitation, as the tracker
can rotate in three dimensions and the entire rotation can be
done freely in one step. Rotation tasks are performed more
efficiently using 3D trackers than when using the common
mouse-based Virtual Sphere and Arcball rotation methods
[13]. In fact, when the rotation of the tracker is mapped
one-to-one with the rotation of the object, tasks involving
rotation can approach the speed of rotating a real-world ob-
ject with one’s hands [3]. The tasks performed faster using
3D trackers, and the error rates were similar across the ro-
tation methods, roughly 6 degrees offset from the intended
position. This is due to the problems that real-world manip-
ulation has: the accuracy of the movement is limited by the
range of motions of the input device and of the hand—shaky
hands make placement incredibly difficult.

2.2 Design Guidelines from 3D User Interface
Research

In Shumin Zhai’s seminal work The Influence of Muscle
Groups on Performance of Multiple Degree-of-Freedom In-
put [1], it is shown that when using a 6 DOF input device,
the use of the user’s fingers adds both speed and precision
to docking tasks. We therefore choose to use a pen-shaped
input device. This gives the user a range of manipulations,
largely involving the rotation of the pen, that primarily fo-
cus on the motion of the fingers. In designing the FinePoint
technique we take into account the affordances of the pen
and the fine motor control it provides. Specifically, we use
the pen’s rotation to affect the object, as the pen can be
rotated in multiple directions using finger motions.

When using the tracker pen as an input device, it is easy to
implement the tracking in an absolute mode: Each possible
position of the pen directly corresponds to some point in
virtual space, and to move the object to that location the
pen must be moved there. Similarly, to rotate an object
to a specific orientation the pen must end up in a similar
specific orientation. This absolute mode of tracking can be
difficult to operate, as certain locations are outside of the
user’s natural range of motions. For example, Bi et al. [9]
found that the usable rolling angle of a pen device is 90
degrees in each direction when used on a surface. The pen
tracker here is being held in the air, so the limitations are
different, but the wrist and arm together still have locations

and orientations that are difficult to reach, especially if both
need to be done at once.

2.3 Constrained 3D Motion
The increased efficiency of rotation with a 3D tracker is also
offset by the fact that for translation-tasks, standard one-
to-one mapped 3D tracking is much slower and less accurate
than a mouse [12]. Teather and Stuerlitzer [10] have found
that constraining 3D translation to a 2D plane produces
faster and more accurate results in repositioning tasks when
compared to fully free one-to-one 3D translations. Similarly,
Bérard et al. [12] find that if the object’s change in position
is based on the initial position of the cursor and how the pen
changes relative to when the object was grasped, speed and
accuracy are higher than when the position of the pen always
maps absolutely to some position in space. That is to say,
efficiency is greater when using the pen in a relative rather
than an absolute mode. In fact, the speed of these actions
approaches that of mouse-based positioning, though the er-
ror rate is still higher. Together, these findings show that
trackers perform better when the mapping between the pen’s
location and the object is not necessarily one-to-one. It’s im-
portant to note that both of these constraints are standard
in the use of the mouse: By restricting the tracker to only 2
dimensions when translating, they mimic the mouse’s inher-
ent limitations. Furthermore, moving the mouse a large dis-
tance in one direction requires re-grasping the mouse, choos-
ing a new starting position each time without moving the
object—the relative movement mode is built into the mouse.
We adopt both the relative positioning mode and the use of
constraints for FinePoint.

As a guideline for which constraints to use, we turn to more
recent, touch-screen based object manipulation techniques.
In one such paper [11], there are two main primitives for
constraining the motion of the object. These are the pivot,
around which the object is rotated, and a second primitive
that can switch between an axis, along which the object
can be moved forward and back, and a plane orthogonal
to that axis, in which the object can move anywhere in that
plane. In both cases the widget allows for rotation about the
original axis. We use a similar structure for our constraints.

2.4 Existing Methods for 3D Motion
The error rate for 6-DOF translation is still higher than
mouse-based methods, and the error for rotation is large
enough that there is a need for enhanced precision for both of
these manipulation types. Constraints reduce the number of
things the user must control at once, but even with these in
place the motions that must be made for accurate placement
are difficult. Furthermore, the restricted range of motion of
the user’s hand and arm makes large changes in rotation and
translation difficult.

To provide the user with the efficiency we desire, there must
be additional ways to move the object beyond the con-
strained, relative one-to-one mapping. One way to provide
this is with the addition of non-isomorphic movement: Mak-
ing large changes to the object’s position or orientation with
smaller changes to the pen, or making small adjustments us-
ing large changes to the tracker. This was shown to provide
a 13% speed increase in large rotation tasks [5]. Another way
is to allow for abstracted movement methods. When rotat-



ing objects with a mouse, the mouse is translated rather
than rotated, and on-screen widgets are often used to de-
scribe how the motion of the mouse maps to the rotation
of the object [6]. A similar approach can be used with the
6-DOF tracker, allowing for both continuous and discrete
movements to be made.

2.5 Design Guidelines from Desktop Graphics
Research

To handle many different manipulation modes we need some
way to select between them. We base our approach on sim-
ilar research using 2D input devices. Our main inspiration
was from Zeleznik and Forsberg’s UniCam technique [4] in
which camera controls were manipulated using only a mouse
and a single button. Eight different camera controls could be
used to manipulate the camera, and were differentiated by
the position of the cursor when clicking, whether the button
was tapped or held down, and the initial direction of motion
after holding down the button. We expand this approach to
a full 6DOF tracking device, taking advantage of its ability
to both translate and rotate to specify many different ways
to manipulate the object.

Figure 1: The FinePoint technique defines six move-
ment types in two groups. Three types, those in the
Constrained Motion group, are used in relation to
a Constraint Widget that defines an axis and plane.
The other three do not require this widget.

3. FINEPOINT
The goal of the FinePoint technique is to integrate existing
methods for precise placement into one technique so that
the user can switch between these methods on the fly. We
divide these methods into two groups: Movement freely in
space, and movement about some axis or within some plane.
To correctly constrain the object’s motion about that axis
or plane, we use a Constraint Widget that defines a point in
space, an axis out of that point, and a plane orthogonal to
that axis. These two groups of manipulation methods are
further broken up into 6 main types of motion, as seen in Fig-
ure 1. Each type of motion has multiple specific movement
methods because different methods will be useful in different
situations. Some are good for the initial rough placement of
the object, while others are made for fine-tuning, giving the
user a range of options that can be used in sequence. Fine-
Point allows the user to change both the movement type
used, and the way the object’s motion is being constrained,
at any time. This lets the user switch rapidly between any
desired set of manipulation methods. To interact with the

world, we use a pen-shaped 3D tracker with a button on
it. Through simple gesture recognition, the user chooses the
specific method of interaction and can move the object.

(a)

(b) (c)

(d) (e)

Figure 2: In this example use case, the bone must be
re-oriented and placed into position. The start state
is shown in Figure 2(a). The bone is roughly placed
using the freehand one-to-one movement method, as
depicted in 2(b). The bone is rotated around this
axis in 2(c). The bone is then rotated away from the
user around the axis shown in 2(d). The end result
is shown in 2(e).

3.1 User-Experience Example
We now describe a typical user experience for the task of
orienting and positioning one object relative to another. In
this example, the user wishes to align a humerus with a



skeleton torso. The two objects are shown in their starting
positions in Figure 2(a). The gray wireframe bone indicates
the desired position and orientation of the humerus, and thus
the task is to align the actual bone as closely as possible to
this wireframe.

We start with the humerus already selected. The user then
uses the tracker-pen to move the object. The user holds
down the pen button, and then moves the pen horizon-
tally. This makes the system enter the one-to-one movement
mode. In this mode, the humerus will mimic the movements
of the pen. When the pen rotates, so will the bone. The
same goes for translation. The user then roughly positions
the object such that one end of the bone is aligned roughly
with the wireframe, and releases the pen button. Once the
button is released, the object will no longer move with the
pen. The new position of the bone is depicted in Figure
2(b). Note that the bone is aligned using the shadows as a
guide.

Next, the user wants to rotate the bone down to the mesh.
The user moves the cursor to the aligned end of the bone and
clicks once, creating a constraint point widget, then drags a
line out from it, towards the user. This puts the constraint
widget in Axis/Plane mode. The widget is shown in Figure
2(b) near the arm socket. The object can be rotated about
that axis by holding down the ‘R’ key to enter the ‘Axis
Rotate’ mode. Now, the user presses down the pen button,
and moves the pen horizontally again. Since the user is in
this Axis Rotate mode, this puts the system in the Winding
state. By moving the pen cursor up and down, the object
is spun as if attached to the cursor by a stick. The user
rotates it such that the bone is as close as possible to the
wireframe, and releases the pen button. This gets the bone
near its desired orientation, as seen in Figure 2(c), but not
near enough.

To finish aligning the bone, the user must rotate it about
other axes than the constraint axis. Specifically, the elbow-
end of the bone is too far forward, even though the other end
is aligned properly. The user deletes the constraint widget
by clicking, and recreates it with a new orientation. The
user then presses down the pen button and makes a yawing
motion to the left. This puts the system in the ‘Flick’ state.
Each time the user performs a flick to the left, the object
rotates one degree counterclockwise about the axis, aligning
it more closely with the wireframe mesh using the shadow
as a guide. The user does this once more before releasing
the button, and this result is shown in Figure 2(d). At this
point, the end of the object needs to be rotated away from
the user. At this point the object is only misaligned by
3 degrees total. This primarily comes from misalignment
around the major axis. Once again, the user recreates the
Axis/Plane constraint widget and uses the flicking gesture
to align the object. The end result, as shown in Figure 2(e),
is aligned with the wireframe with a translational error of
one millimeter and a rotational error of half of a degree.

It’s important to note that the bone in Figure 2(d) might
look closer to the wireframe, as can be observed by the fact
that less of the wireframe is visible in the shadow, and the
object seems to encompass the wireframe itself. This is for
two reasons: first, the object as it is aligned in Figure 2(d)

is wider than the actual object—has a larger silhouette from
the user’s perspective—and thus the errors are covered up.
Second, the translational offset is masking the deficiencies
in the rotational offset. Note the disparities at the shoulder-
end of the humerus in Figure 2(d), and that those disparities
are much less apparent in Figure 2(e).

(a) (b)

Figure 3: The gestures allowed by the pen all involve
either translating along an axis of the pen or rotating
about an axis of the pen, but not both. These axes
are defined as the pen’s major axis, the up direction
(where the button is) and the axis orthogonal to
the previous two. Each gesture involves rotating or
translating in one dimension. This gives 12 possible
gestures.

3.2 The Pen
In order to interact with the object, we use a 3D tracker
pen. The specific technology used is not of utmost impor-
tance, it just needs to have a definite position in 3D space
and a button on the pen. The pen is chosen as a tool that
can be adeptly manipulated by the user’s wrist and fingers,
rather than just the arm. Furthermore, it also has an easily-
identifiable major axis and a forward direction. A major
feature of the FinePoint technique is the ability to constrain
motion about some axis, so we can use the pen’s shape to
correspond with this axis. This is especially important for
the gesture recognition mentioned above.

We define all of the gestures in terms of the pen’s initial po-
sition and orientation at the start of the gesture. These ges-
tures are shown in Figure 3. The basic guidelines for these
gestures are that the pen should only either rotate or trans-
late, and that they should only have to move along/around
one axis. For example, the user may roll the pen about its
main axis, or pitch the pen upwards, but not do both in
one gesture. This reduces the complexity of the gestures.
These are all in relation to the pen’s direction: if the pen is
being held sideways, the “forward motion” gesture is chosen
by moving the pen along its major axis, rather than moving
it forwards towards the screen. This stipulation prevents
the pen from having to be oriented in the correct way for
a given gesture to make sense. For example, the roll ges-
ture will always require rolling the pen, not just rotating it
around some arbitrary axis in space.

3.3 The Constraint Widgets



(a) (b)

Figure 4: This depicts the Constraint Widget in its
two forms. On the left, in Figure 4(a), is the Con-
straint Point. The object rotates about this point.
On the right, in Figure 4(b), the Axis/Plane con-
straint form is shown. In this form, the axis is drawn
as white arrow, and the plane orthogonal to it is
drawn as a square around it. The constraint point
is still drawn here. The vertical line orthogonal to
the arrow denotes the “up” direction of the plane.

One major aspect of the FinePoint technique is the ability
to constrain the object to a smaller number of degrees of
freedom. This allows the user to make adjustments to some
components of the object’s position or orientation, without
affecting the others. To control what constraints are being
placed on the object, we use the Constraint Widget, shown
in Figure 4. As we see, this widget takes on two forms: a
single point in Figure 4(a), and a combined axis/plane con-
straint in Figure 4(b). The user first creates the constraint-
point by clicking the button on the pen once. This will place
the point at the cursor’s position in space. Normally, an ob-
ject will rotate about its centroid. Once the constraint-point
has been placed, however, the object will rotate about that
point instead.

By placing the cursor on the constraint point, then hold-
ing down the button and dragging away from the point, the
constraint widget will go into Axis/Plane mode. This mode
has an axis coming out of the constraint point, and a plane
orthogonal to that axis. When the user is dragging, the ar-
row will point towards the position of the cursor, and will
remain oriented in that direction after letting go of the but-
ton. With this axis defined, all rotations will happen about
that axis. When the user clicks on empty space when the
widget is in Axis/Plane mode, it will be deleted. This allows
the user to quickly discard the constraint without having to
maneuver the cursor to a potentially awkward position.

3.4 Movement Types
The FinePoint technique is designed to combine many dif-
ferent methods of manipulating objects into one technique.
These methods are divided into two main groups: Methods

that translate or rotate the object freely, and methods that
move the object in relation to some axis or plane. We call
these two groups “Free Motion” and “Constrained Motion”.
We then divide each group into three types of motion, as
seen in Figure 1. To determine which set of methods are
available, we use a state machine based on these six types:
When the user is in the correct state, they can use all ma-
nipulation methods associated with the corresponding type.

In the Free Motion group the three types of motion are“Free
Translation”, in which the object can be translated in any di-
rection in 3D space but will not rotate, “Free Rotate”, where
the object can be rotated in all three directions freely, but
has its position locked in place, and a“Completely Free”type
in which the user can both translate and rotate the object,
for a full six degrees of freedom. In the Constrained Motion
group, we require that an Axis/Plane constraint is defined
with the constraint widget. The three types of motion here
are “Axis Rotation”, in which all rotation is about the axis,
“Axis Translation”, in which the object can only move back
and forth along the axis, and “Planar Translation”, in which
the object’s movements are locked to a plane orthogonal to
that axis. While Free Rotate and Free Translate are con-
strained to only three degrees of freedom apiece, only rota-
tion or only translation, they are grouped in the Free Motion
category because they still have more freedom of movement
than the Constrained Motion states, which only have one or
two degrees available to them.

3.5 The State Machine
The six states are organized as shown in Figure 5. We
first start by looking at the Free Motion states. When the
user begins the overall movement task, they will start with
nothing constraining the object’s movement, and can choose
more specific constraints as necessary. Thus, the user starts
in the Completely Free state. From there, the user can
switch to the Free Rotate and Free Translate by holding
down the ‘R’ and ‘T’ keys respectively. They are only in
these states as long as the corresponding keys are held, and
releasing the keys returns the user to the Completely Free
state. This allows the user to rapidly toggle between these
three states.

Now we look at the Constrained Motion group. We can
think of the two groups as being parallel to one another, with
one state as the baseline and the other two states entered
by holding down a keyboard key. We place the Axis Rotate
and Axis Translate states in the same positions as the Free
Rotate and Free Translate states, and correlate the Plane
Translate state with the Completely Free state, at the top.
Thus, the user starts in the Plane Translate state and enters
the Axis Rotate and Axis Translate states by holding down
‘R’ and ‘T’. This is chosen because planar translation allows
for two degrees of freedom, rather than just one. By pressing
the ’R’ or ’T’ keys we further restrain its motion.

To switch from the Free Motion group to the Constrained
Motion group, the user must define an axis/plane constraint.
Later, the user can delete that constraint to switch back to
the Free Motion group. Since the constraint widget can be
created or deleted at any time, the user does not need to
release the state-changing keys to do so. Thus, the user can
switch from the Axis Rotate state to the Free Rotate state



Figure 5: The state machine. Within each of the two groups, Free Motion and Constrained Motion, the
state is based on whether the R or T keys are held. When neither are held, FinePoint is in the top-level
state, either Completely Free or Plane Translate. To switch between groups, the user creates or deletes an
Axis/Plane Constraint Widget.

by deleting the constraint, without having to return to the
Plane Translate state first. When only the point-constraint
exists, the object will be in the Free Motion states.

3.6 Object Manipulation
Each state corresponds to one of the six movement types. In
a given state, the user can choose one of several movement
methods. Each of these methods is of the same movement
type, but they vary in terms of speed and precision. This
allows the user to first roughly align an object with a fast
method, and then switch over to a more deliberate method
for fine-tuning. For example, a user wants to move an object
along an axis. The user may first use a continuous move-
ment method, where the object slides along the axis until it
reaches the correct place. Then, the user switches to a dis-
crete “nudging” method to put the object exactly in place.
We differentiate between these actions using simple gesture
recognition, as mentioned above in Section 3.2. To begin,
the user holds down the button on the pen. Then, they
make an initial translation or rotation. Once the gesture is
recognized, the object will move. In the example, the contin-
uous sliding method is selected by making a poking gesture
with the pen, causing the object to move one-to-one with
the pen. The user is locked into that movement method un-
til the button is released. This allows a movement method
to interpret several motions in different ways, without wor-
rying about accidentally switching to a different method by
making a wrong gesture.

This gesture-based selection allows the user to pick from the
different methods on a moment-to-moment basis. This gives
the user to rapidly switch between these methods in orders
of increasing granularity for a result that is precise, with-
out wasting time making the large, rough movements with
a more precise tool. The specific methods implemented will
vary from application to application, however. For example,
in some applications the difference between very large move-
ments and very small ones is just a few orders of magnitude:
when the large movements are still relatively small to begin
with, as with the bone placement example above. In this
case the user may only need two different movement meth-
ods to achieve the desired level of precision. In other ap-
plications, the user may be tasked with re-positioning small
objects over very large distances, and thus several tools may

be necessary to make increasingly fine-grained adjustments.

4. IMPLEMENTATION AND RESULTS
To demonstrate the FinePoint technique, we developed a
sample implementation and pilot tested it with a docking
task inspired by 3D medical imaging applications. For our
pilot test, the user’s task is to reposition a humerus relative
to a skeleton torso, as in the example user experience section
above. The goal of this task is to align the humerus so that
it matches with the gray wireframe humerus in the shoulder-
blade socket, as seen in Figure 2(e). This task allows us to
measure the accuracy of different placement methods. The
bone starts in the pictured default position and must be
moved into position. When the desired level of accuracy is
met, the console indicates that the task has been completed.
The accuracy constraints used in this example are a maxi-
mum of one millimeter error in translation and one degree
of error in rotation.

Our discussion begins with a description of our implementa-
tion. We did not implement a full set of movement methods
for each state, instead choosing to focus on creating a robust
set of manipulations for just one state. For this we chose the
Axis-Rotate state. We also implemented a basic one-to-one
movement method for each of the other states. Following
this, we describe informal user feedback and results from
our pilot testing, which has so far included just ourselves
and our lab members as users.

4.1 Axis-Rotate State Implementation
In the Axis-Rotate state, we implement three different ro-
tation methods: a twisting method, a flicking method, and
a winding method. In all cases, when the pen button is re-
leased the object jumps back to the Axis-Rotate state, and
any of these three gestures can be performed again to select
that movement method.

The first method, twisting, is shown in Figure 6. To enter
the mode, the pen is rolled in either direction. Once it has
rolled far enough, FinePoint will recognize this rolling as a
gesture. Once this happens, the object will start twisting
along with the pen. The pen will twist in either direction,
so in order to lock it in place the user must let go of the



Figure 6: The twisting method of rotation. The pen
is twisted, rolled about its main axis, and the object
also twists. We assume the constraint axis is placed
at the centroid for this example, but it need not
be—the object will rotate about the constraint axis,
wherever it is placed.

button. From there, the user can reorient their hand and
start twisting again, as if turning a screwdriver. This is an
example of intuitive, one-to-one motion. The user enters
into this method by making a rolling action about the pen
axis, and the object then rolls around the constraint axis.

(a) (b)

Figure 7: The flicking method of rotation. On the
left, we see the result of a single flick: The object is
rotated by a set amount, theta. On the right, multi-
ple flicks are depicted: by making multiple gestures
in a row, the object continues to rotate in discrete
increments.

The second method, flicking, is shown in Figure 7. The user
makes a flicking gesture in one of four directions: up, down,
left, or right. More specifically, the user must either pitch or
yaw the pen while keeping it generally in the same position.
This puts the object in the Flicking state. From there, as
long as the pen is held down, the user can keep making flicks
in the same direction to rotate the object. Each flick rotates
the object by a discrete amount. In our implementation, this
is 1 degree. This allows the user to make very fine adjust-
ments to the object’s orientation once it is mostly oriented
correctly. This, and other discrete-increment methods, al-

low for absolute precision numerically, rather than looking
for precise placement visually.

(a)

(b)

Figure 8: The winding method of rotation. We con-
sider the Figure 8(a). The cursor is depicted in blue,
while the Axis/Plane constraint is colored red. The
user first pulls out an arm from the axis by drag-
ging horizontally. Then, by repositioning the cur-
sor, the object will rotate as if attached to the arm.
The arm can be dragged in a complete circle around
the Axis/Plane constraint. Comparing both images,
each of these examples depict the arm being moved
upwards by the same amount. In the second image,
the cursor is farther from its start point, so the angle
of rotation is smaller.

The third method, winding, is demonstrated in Figure 8(a).
The user pulls out an arm horizontally from the object.
Once the translation is large enough, the winding gesture
will be recognized. After that point, moving the pen up and
down will cause the object to rotate. More specifically, once
the winding state is entered the arm is locked to a specific
orientation of the object. By moving the arm to a differ-
ent point around the object, the object will turn to face it.
Thus, the object can be fully rotated by dragging the pen
around in a circle from where the gesture first started. The
other important thing about the winding gesture is the arm’s
length. This is demonstrated by comparing Figure 8(a) and
Figure 8(b). When the pen is close to where the gesture be-
gan, the arm is short. Thus, moving the pen a small amount
will change the angle of difference a lot. When the arm is
long, a similar vertical movement of the pen will only change
the angle by a small amount. This is an example of a more



abstracted movement method, since the pen does not need
to be rotated in order to rotate the object. These sorts of
abstracted methods can be applied to other situations: For
example, the winding method can be used for axis transla-
tion as well: By winding around the object, it can be moved
very slowly but continuously.

To align the humerus with the wireframe, the user can first
use the twisting or winding methods to achieve a decent
level of accuracy, then use the flicking method to narrow in
on the most accurate possible orientation. Multiple levels
are provided because, even though the flicking method is
the most accurate and discrete, making big changes to the
orientation requires a very large number of flicking motions.
For changes larger than a few degrees, it is much faster to
use one of the other two first, then switch to flicking. This
can be used in conjunction with the one-to-one methods for
translating within the plane and along the axis to move the
bone from its starting position into place.

4.2 Object Movement and Pen Orientation
The most important observation made is that object mo-
tion should not always be relative to the pen’s motion. For
example, consider the scenario where the object is in Free
Translate mode using a one-to-one movement method. If
the user moves the pen toward the screen, the object should
follow suit, regardless of object orientation. The reasoning
is this: Consider the case where the opposite is true. The
object will move straight backwards only if the pen is moved
in a straight line along its axis, rather than straight back in
world space. If the user is unable to perfectly position the
pen to face towards the screen, then the object will move at
a slightly wrong angle when the user moves the pen towards
the screen. Thus, it is often better to make translation ac-
tions correct from the user’s perspective, rather than from
the perspective of the pen’s orientation.

The above advice does not necessarily always apply, espe-
cially in the case of rotation. We next return to the axis
rotate mode: Trying to rotate the object around an axis
should only require twisting, or else the axis of rotation no
longer lines up with the axis of the pen, and understanding
how to rotate the pen becomes more difficult. One caveat
to this is that if the axis of rotation is facing towards the
user, and the pen is facing away, the object will appear to
rotate in the opposite direction of the pen. For example,
if both the pen and object are rotated clockwise, the object
rotates counterclockwise from the direction of the user. This
can be fixed by reversing rotation direction when the axis
is opposite to the user. This also applies to translations in
the plane orthogonal to the axis. The takeaway from this is
that, while the developer can implement many methods of
interacting with the object, not all of them will make sense
even when following the same set of rules.

4.3 Graphical Elements
The implementation as it stands is lacking in graphical cues
as to which state the system is in. We consider a few pos-
sibilities here, and discuss the trade-offs between them. It
is easy to add cueing information to the axis/plane form of
the constraint widget. For example, the widget might have
the arrow highlighted in the axis-translate state, and the
plane highlighted in the plane-rotate state. A ring signify-

Figure 9: The winding arm is depicted her, extend-
ing from the constraint widget within the plane of
the widget. A hexagon also appears around the con-
straint widget that will rotate with the object, and
the arm will change in length based on the displace-
ment of the cursor from its initial location.

ing rotation could be added for the axis-rotate state. The
difficulty here is that there is not always a constraint wid-
get. The user could instead have a widget around the object
itself, but the user loses the connection between the widget
and the object’s motion. One possible solution would be
to draw the state information around the constraint wid-
get when it exists, and around the object when it does not.
This is internally consistent, since the object rotates about
its centroid when no constraint point exists so the constraint
point is considered to be at the center of the object.

Another factor to consider is graphical elements that differ-
entiate manipulation methods within the same state. These
will help the user identify when they have accidentally se-
lected the wrong method through a misinterpreted gesture.
Gesture recognition is not a perfect science, so we can ex-
pect this to happen with some frequency, though we do try
to minimize it with our stipulations for simple gestures. By
developing a different graphical element for each method, we
can let the user identify the state they are in even if they do
not know what sequence of actions led to this state. Our ex-
ample here is the winding method from our implementation,
as pictured in Figure 9. We draw an arm that depicts the
distance the pen is from the initial grabbing point, which
helps the user identify where they can move the pen to get
which results. We also draw a hexagon in the plane orthog-
onal to the axis, to give a better understanding how a flat
object rotates in the plane.

4.4 Results from Pilot Testing
Results from Pilot Testing To test the validity of the Fine-
Point technique, we tested the docking task described in the
User Experience Example. This is not a formal user study,
simply an experiment to see if the technique was worth pur-
suing further. The bone started in a set position, and had
to be re-oriented and re-positioned to match the mesh. This
was run with only one user under three sets of parameters:
First we ran the docking task with FinePoint. While all
methods were available to the user, freehand movement was
only used for an initial rough alignment. After that, all



translation and rotation was done using the Axis/Plane con-
straint widget. Next, the task ran using a Freehand tech-
nique, using only the one-to-one free-movement method with
the constraint widget disabled. Finally, a middle-of-the-road
approach was tested, where the Completely Free, Free Ro-
tate, and Free Translate movement types were available, but
the constraint widget was disabled. Each task was run 5
times, and the number of seconds required was recorded.
After 5 minutes, the trial was aborted if not yet complete.
In order to count as ‘aligned’, the user had to release the
button so that the object was at rest in the correct position.
The results of this test are shown in Table 1.

Technique FinePoint Freehand Middle-of-the-road

Trial 1 122.81 46.368 20.975
Trial 2 177.163 106.777 ABORTED
Trial 3 173.233 90.228 37.532
Trial 4 87.136 28.076 235.828
Trial 5 166.511 19.95 181.575
Average 11.268 58.280 155.182

Table 1: A comparison between the time spent plac-
ing the humerus in the wireframe guide using Fine-
Point, a freehand placement method, and a middle-
of-the-road placement method.

Thus, the fastest technique for alignment was the Freehand
technique. Furthermore, this method generally saw increas-
ing returns from repeated tests, while the others did not.
The Middle-of-the-Road technique was the slowest, but also
had the largest variance. In some instances, alignment went
very fast, but in one case the user was unable to align the
object and ran out of time. FinePoint was much slower than
the freehand technique, but did not ever take so long that
the trial had to be aborted. We discuss the ramifications
of these results, and what this means for the development
of the FinePoint technique in the Results Discussion section
below.

5. DISCUSSION
The FinePoint technique has been implemented in this pa-
per—or rather, a subset of it has been. This technique is
meant to be one tool in a toolbox for whatever task the user
is performing, rather than a standalone application. Here
we discuss the design decisions made and possible directions
for expanding on the FinePoint technique in the future. Any
future iterations on this research would also include a for-
mal user study that compares the FinePoint’s effectiveness
with mouse-based techniques in terms of both rotating and
translating.

5.1 Initial Design Goals and Unsuccessful Im-
plementations

The driving force behind FinePoint is the ability to manip-
ulate an object with speed and precision, and as we have
seen in the Related Works section, the methods for improv-
ing efficiency differ between translation and rotation. Thus,
instead of trying to find a movement paradigm that is su-
perior in all regards to both desktop manipulation methods
and VR trackers, we simply allow for both. By combining
this with the axis-and-plane widget idea from Schmidt et al.
[11], we can have a system where constraints can be placed

and then the user can either rotate or translate. Where we
depart from that initial widget is in deciding whether to
translate or rotate. The Schmidt et al. paper uses a 2D
cursor-based interface, which requires the user to click on
a part of the widget in order to either rotate or translate.
This is more difficult in 3D, and also lacks some of the fea-
tures we’d like to allow for, such as non-isomorphic, scaled
movement and discrete, incremental motions.

To work with the 3D tracker effectively, we need a few
changes from the system by Schmidt et al. First, we want
a system that where the pen does not need to be in specific
position or orientation in order to start moving the object.
Second, we need a system that allows for the more abstract
input methods we mention above. In order to implement a
one-to-one movement method, an incremental method, and
a non-isomorphic method for each of rotation and transla-
tion, we need to have a way to select each movement method.
In an effort to reduce the cognitive load required at any given
moment we split these methods up based on how they affect
the object. Thus, we want different states for translation
methods and rotation methods.

Initially, on the thinking that every action should be per-
formed with a pen where possible, all state-switching was
done with gestures. Thus, the user had to perform gestures
both to switch between states and to perform object manip-
ulations. The result of this thinking was a 3-level tree, where
the user starts at the root level and first makes a gesture to
transition to a movement type, and then makes second to
choose the specific manipulation method. Once the manip-
ulation method was chosen, the user would use that method
until they explicitly cancelled out of it. This was cumber-
some and put too much burden on the user to remember
which gestures did what in which situations. By collapsing
all movement methods of a given type into one state, this
reduced the tree to just two levels. From there, FinePoint
developed into its current form, which uses the constraint
widget and keyboard keys to switch states instead of ges-
tures, separating the “manipulation method” actions from
the “state change” actions.

The initial constraint widget was much more complex. It
was built as a separate mode altogether that the user used a
keyboard toggle to enter, and the user could then place con-
straint points in space. From there, the user could create an
axis or a plane by connecting multiple constraint points, or
just select a constraint point to use as a pivot. This made
the pivot and the axis/plane two different things instead of
two forms of one widget. This implementation allowed for
multiple constraint widgets to exist at once, but made creat-
ing an axis/plane constraint quite complex. By switching to
a constraint widget that could be created and destroyed at
any time from any state, the widget is forced to be more sim-
plistic, and this reduction in complexity led to the current
system. In Section 5.3, we discuss some additional function-
ality that can be added back into this current model of the
widget.

5.2 Design Decisions for the Current State Ma-
chine

The use of the keyboard for state-switching is based on
the research of Yang et al [7], which suggests that mode-



switching is most efficient through button presses on the
non-dominant hand. We are wary about putting too much
focus on the keyboard, though, as it divides the user’s at-
tention between the pen and the keyboard. We want the
user to be focused on the pen position, as the pen is often
going to be at the center of focus between the user and the
screen. With that in mind, we use gestures to select move-
ment methods, taking advantage of the free-floating nature
of the tracker to allow for many kinds of simple gestures.

Getting into the specifics of the six states chosen, we circle
back around to the constraint widget. We recognize that re-
quiring the user to set up a constraint widget with the right
axis/plane in order to move the object at all is asking a lot
from a first-time user. Thus, we allow for movements that
are unconstrained by the constraint widget. Even without
the widget, the user may wish to lock the object to only
translation or only rotation, so we provide for that with the
two keyboard mode-change keys, making the completely free
movement mode the default. Once the constraint widget en-
ters the picture again, integrating all of the movement types
gets slightly more complex. When considering an axis, an
object can either translate along that object or orthogonal
to it, giving two different possible translation states. The
object can also be rotated about that axis. Having a second
rotation-type in relation to the axis makes little sense, as
all 3D rotations can be made using a series of 2D rotations,
so this can effectively be lumped into the 3D rotation-only
state. Still, that leaves us with the six movement types:
Completely free movement, free rotation, free translation,
axis-only translation, plane-only translation, and axis-only
rotation. Having six different keys to switch between these
states will put too much focus on remembering which key
does what, so we relegate the free-motion states to only be
accessible when there is no constraint widget. This reduces
it down to only three states accessible with the keyboard. In
this model of the FinePoint technique, only the “Completely
Free” movement mode allows for both translation and rota-
tion. This is purposeful, to reduce the number of states
the user has to keep track of, but it does somewhat limit
the possible manipulation methods available. New ways of
pairing the translation and rotation, such as “constrained
translation but free rotation” could always be added in by
using another keyboard modifier, but as it is the system is
built around the current six states.

5.3 Expanding the Constraint Widget
The constraint widget as it is described in this paper is very
simple. There can only be one of them, and it has to be
placed by moving the cursor to the right spot, unable to
move. Expanding this widget to include additional function-
ality will give the system much more precision and flexibility.
We outline here the additions we feel are necessary to make
the widget complete. The first is to allow the user to have
multiple widgets at a time, with one of them active and the
others disabled. This gives the system a memory of previous
points that lets the user toggle between different constraints
as necessary. Another important feature is the ability to
move constraint points. A handle can be added to the wid-
get that the user can grab with the cursor to move around.
It could be treated like an object, and moved about using the
FinePoint technique rather than only moving in a one-to-one
fashion. This allows the user to make small adjustments to

their constraints, just as the user would make adjustments
to the object, ever-increasing the maximal level of precision
available. The other important feature is the ability to con-
nect these constraints to objects, such that when the object
moves the constraint moves along with it. This allows the
user to place a constraint point at a position on the object,
move the object to a new location, but still be able to rotate
the object about that constraint point. This idea of scoping
constraints connects the other expansions on the widget by
allowing the user to move anything in relation to anything
else.

5.4 Standardized Gestures
The FinePoint technique does not define a fully-realized set
of manipulation methods for each movement type, but we
recognize that not all implementations need to have their
own specialized set of gestures. Despite this, there are a
few concepts in the implementation section that can be ap-
plied to more than just the Axis-Rotate state. First is the
flicking gesture. This gesture can be performed in 4 direc-
tions: up, down, left, and right. This allows for positive and
negative changes along 2 degrees of freedom, making this a
useful gesture for both the plane-translate and axis-translate
movement types. Second, the winding action can be re-used
for axis translation, where making successive circles slowly
inches the object in one direction or another. Third, we look
at the twisting gesture. As mentioned above, the rotation of
the pen has a one-to-one correspondence with the rotation
of the object. A similar thought process can be applied to
the other states: moving in a direction that makes sense for
that mode. For example, the user can make a poking gesture
in the axis-translate state to begin moving along the axis.
Further work on FinePoint will involve expanding on these
gestures to create a cohesive set of gestures for each move-
ment type that allows for several kinds of motion of varying
granularity. The goal of this work will be to create a set of
movement metaphors, each of which apply to most of the
different movement types. This will reduce the number of
different movement methods the user needs to remember,
keeping only one set of gestures in mind at all times rather
than having a different set of three for each state. Once a
set of standard methods has been developed, an application
can also implement expert-level methods that provide spe-
cific functionality for a user who is already comfortable with
the standard methods.

5.5 Insights on the Pilot Test Results
Reflecting on the informal pilot test, we notice a few areas in
which FinePoint is currently lacking. First is something we
are already aware of: only the axis-rotation methods have
so far been implemented, and all other movements are one-
to-one. As noted in the introduction, rotation is faster using
freehand 6DOF motion than with a mouse, but translation
is slower in this freehand 6DOF mode. Since we focused
on using the features currently implemented in FinePoint,
we used one-to-one translation (though still constrained to
a plane or axis) with abstracted-out, gesture-driven rota-
tion. This perhaps gives us the worst of both worlds, but
gives a good glimpse at the potential troubles that will exist
even with a fully-implemented system. The two big ones we
noticed were problems with the constraint widget, and the
high rate of user error with the FinePoint technique.



The constraint widget was more problematic to orient than
expected. The first issue was that the constraint widget
could only be placed at the end of the cursor. While this
extended out from the pen a few inches, this meant that
constraint points could only be placed a few inches into the
scene—about where the bones were located. Thus, axes
could only be drawn towards the user, not away. A dif-
ferent method of placing constraint points may be required,
or a different way of controlling the cursor’s depth in the
virtual space. Second, it was difficult to orient the axis in
a desired direction. While the user often tried to orient the
axis along the object’s major axis, or orthogonal to it, per-
ceptual errors meant that the object would actually rotate
about some other, less ideal axis. Even when the user knew
the steps needed to achieve the right amount of accuracy,
following through with this was difficult. This issue also oc-
curred with translation. This suggests that the constraint
widget needs to expand further to allow common axes to be
easily selected.

During the FinePoint technique trials, a large number of
unintentional movements, mis-clicks, and other errors oc-
curred. Some of these were caused by tracker accuracy: if
the hardware thinks the tracker is oriented differently than it
actually is, gestures are interpreted incorrectly. While not a
FinePoint error specifically, it may be necessary to consider
safeguards against these accidental errors in later iterations
of the FinePoint technique. Other errors were caused by not
holding down the ‘R’ button before starting a gesture. This
caused the system to do a planar translate instead of a ro-
tation. This occurred several times, each time requiring the
user to reposition the bone within the plane. This may mean
that a default ‘root’ state should exist that does not allow
for any rotation or translation, and the plane-translate state
can be entered by holding a different button. Alternatively,
this might suggest that state-transitions should be done by
toggling the button, not holding it down, which would make
it harder to accidentally return to the plane-translate mode.
We expect that these issues will be lessened by giving the
user more visual feedback about which mode the system is
in at any given time.

One other concern that arose during the trial was arm and
wrist fatigue. In general, FinePoint caused less fatigue than
the freehand approach, as the hand did not have to twist
in strenuous directions. Despite this, we believe it will be
worthwhile to make gestures as easy to perform as possible.
This means movement methods that do not require the user
to lift their arm off the table, and making sure gestures do
not require high precision from the user’s hands, or else the
user will tense up and strain the wrist for long periods of
time. Relatedly, care must be taken in how the gestures
are implemented. For the twisting movement method, the
threshold for recognizing as a twist gesture was set at ten
degrees. Once this was reached, the object would rotate
instantly to align itself with the pen’s rotation. To rotate the
object five degrees, it must first be rotated the ten degrees
necessary to recognize the gesture, then rotated back by
five degrees. This is inefficient and frustrating to deal with.
To combat this, rotations must be based on the amount of
rotation after the gesture is recognized.

6. CONCLUSION

The intent of the FinePoint technique is to combine the best
traits of both desktop and VR systems for manipulating ob-
jects. We believe that there is merit to the idea of switching
between different movement methods based on the type of
movement and level of granularity, but in pilot testing this is
still much slower than regular one-to-one tracking. Despite
this, there are a large number of enhancements left to be
made before FinePoint is fully implemented, and thus we be-
lieve it is still an exciting direction for future research. The
addition of multiple constrained translation methods will in-
crease the viability of the FinePoint technique immensely, as
translation is the weak point of the 6DOF tracker.

One part of this work that shows promise is the combination
of 3D tracker and keyboard. We believe that the hotkey-
driven interfaces of many desktop applications can be com-
bined with the freedom of the tracker—especially in its abil-
ity to rotate—to allow for novel interface methods that are
more robust than is allowed by the mouse. Gestures pro-
vide a second set of interface methods that complement the
hotkeys, allowing the application to assign different kinds of
commands to each. This will also require research into ways
to accurately express these controls to the user, as the in-
creased freedom of the pen also increases the cognitive load
on the user, in remembering what different motions do.

From this work we can conclude that one major factor in
balancing a large number of movement methods is expressing
them all differently with feedback to the user, and making
sure the user can keep track of them all. Since the movement
methods are selected via gesture, and different gestures are
used in different modes, there must be a way of representing
all of these to the user in a meaningful way. While using
a mouse to navigate through a list to select different tools
can be slow and cumbersome, it allows the user to see all
options available at once. Since gestures are motions, this is
not such an easy task. Future work in integrating the 6DOF
tracker with desktop interfaces must address this problem in
order to utilize the tracker effectively.

7. ACKNOWLEDGEMENTS
This work was funded in part by the NSF (IIS-1054783).

8. REFERENCES
[1] Zhai, Shumin, Paul Milgram, and William Buxton.

”The influence of muscle groups on performance of
multiple degree-of-freedom input.” Proceedings of the
SIGCHI conference on Human factors in computing
systems. ACM, 1996.

[2] Boritz, James, and Kellogg S. Booth. ”A study of
interactive 6 DOF docking in a computerised virtual
environment.” Virtual Reality Annual International
Symposium, 1998. Proceedings., IEEE 1998. IEEE,
1998.

[3] Ware, Colin, and Jeff Rose. ”Rotating virtual objects
with real handles.” ACM Transactions on
Computer-Human Interaction (TOCHI) 6.2 (1999):
162-180.

[4] Zeleznik, Robert, and Andrew Forsberg.
”UniCam—2D gestural camera controls for 3D
environments.” Proceedings of the 1999 symposium on
Interactive 3D graphics. ACM, 1999.



[5] Poupyrev, Ivan, Suzanne Weghorst, and Sidney Fels.
”Non-isomorphic 3D rotational techniques.”
Proceedings of the SIGCHI conference on Human
Factors in Computing Systems. ACM, 2000.

[6] Conner, Brookshire D., et al. ”Three-dimensional
widgets.” Proceedings of the 1992 symposium on
Interactive 3D graphics. ACM, 1992.

[7] Li, Yang, et al. ”Experimental analysis of mode
switching techniques in pen-based user interfaces.”
Proceedings of the SIGCHI conference on Human
factors in computing systems. ACM, 2005.

[8] Teather, Robert J., and Wolfgang Stuerzlinger.
”Guidelines for 3D positioning techniques.”Proceedings
of the 2007 conference on Future Play. ACM, 2007.

[9] Bi, Xiaojun, et al. ”An exploration of pen rolling for
pen-based interaction.” Proceedings of the 21st annual
ACM symposium on User interface software and
technology. ACM, 2008.

[10] Teather, Robert J., and Wolfgang Stuerzlinger.
”Assessing the effects of orientation and device on
(constrained) 3D movement techniques.” 3D User
Interfaces, 2008. 3DUI 2008. IEEE Symposium on.
IEEE, 2008.

[11] Schmidt, Ryan, Karan Singh, and Ravin
Balakrishnan. ”Sketching and composing widgets for
3d manipulation.” Computer Graphics Forum. Vol. 27.
No. 2. Blackwell Publishing Ltd, 2008.

[12] Bérard, François, et al. ”Did “Minority Report” get it
wrong? Superiority of the mouse over 3D input
devices in a 3D placement task.” Human-Computer
Interaction–INTERACT 2009. Springer Berlin
Heidelberg, 2009. 400-414.

[13] Hinckley, Ken, et al. ”Usability analysis of 3D rotation
techniques.” Proceedings of the 10th annual ACM
symposium on User interface software and technology.
ACM, 1997.

[14] Poupyrev, Ivan, et al. ”Egocentric object manipulation
in virtual environments: empirical evaluation of
interaction techniques.” Computer Graphics Forum.
Vol. 17. No. 3. Blackwell Publishers Ltd, 1998.


